અવયવ
\left(w-12\right)\left(w+7\right)
મૂલ્યાંકન કરો
\left(w-12\right)\left(w+7\right)
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=-5 ab=1\left(-84\right)=-84
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને w^{2}+aw+bw-84 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-84 2,-42 3,-28 4,-21 6,-14 7,-12
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -84 આપે છે.
1-84=-83 2-42=-40 3-28=-25 4-21=-17 6-14=-8 7-12=-5
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-12 b=7
સમાધાન એ જોડી છે જે સરવાળો -5 આપે છે.
\left(w^{2}-12w\right)+\left(7w-84\right)
w^{2}-5w-84 ને \left(w^{2}-12w\right)+\left(7w-84\right) તરીકે ફરીથી લખો.
w\left(w-12\right)+7\left(w-12\right)
પ્રથમ સમૂહમાં w અને બીજા સમૂહમાં 7 ના અવયવ પાડો.
\left(w-12\right)\left(w+7\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ w-12 ના અવયવ પાડો.
w^{2}-5w-84=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
w=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-84\right)}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
w=\frac{-\left(-5\right)±\sqrt{25-4\left(-84\right)}}{2}
વર્ગ -5.
w=\frac{-\left(-5\right)±\sqrt{25+336}}{2}
-84 ને -4 વાર ગુણાકાર કરો.
w=\frac{-\left(-5\right)±\sqrt{361}}{2}
336 માં 25 ઍડ કરો.
w=\frac{-\left(-5\right)±19}{2}
361 નો વર્ગ મૂળ લો.
w=\frac{5±19}{2}
-5 નો વિરોધી 5 છે.
w=\frac{24}{2}
હવે w=\frac{5±19}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 19 માં 5 ઍડ કરો.
w=12
24 નો 2 થી ભાગાકાર કરો.
w=-\frac{14}{2}
હવે w=\frac{5±19}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 5 માંથી 19 ને ઘટાડો.
w=-7
-14 નો 2 થી ભાગાકાર કરો.
w^{2}-5w-84=\left(w-12\right)\left(w-\left(-7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 12 અને x_{2} ને બદલે -7 મૂકો.
w^{2}-5w-84=\left(w-12\right)\left(w+7\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}