મુખ્ય સમાવિષ્ટ પર જાવ
v માટે ઉકેલો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=1 ab=-12
સમીકરણને ઉકેલવા માટે, v^{2}+v-12 નો અવયવ પાડવા માટે સૂત્ર v^{2}+\left(a+b\right)v+ab=\left(v+a\right)\left(v+b\right) નો ઉપયોગ કરો. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,12 -2,6 -3,4
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -12 આપે છે.
-1+12=11 -2+6=4 -3+4=1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-3 b=4
સમાધાન એ જોડી છે જે સરવાળો 1 આપે છે.
\left(v-3\right)\left(v+4\right)
મેળવેલ મૂલ્યો નો ઉપયોગ કરીને અવયવ પાડેલ પદાવલિ \left(v+a\right)\left(v+b\right) ને ફરીથી લખો.
v=3 v=-4
સમીકરણનો ઉકેલ શોધવા માટે, v-3=0 અને v+4=0 ઉકેલો.
a+b=1 ab=1\left(-12\right)=-12
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની v^{2}+av+bv-12 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,12 -2,6 -3,4
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -12 આપે છે.
-1+12=11 -2+6=4 -3+4=1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-3 b=4
સમાધાન એ જોડી છે જે સરવાળો 1 આપે છે.
\left(v^{2}-3v\right)+\left(4v-12\right)
v^{2}+v-12 ને \left(v^{2}-3v\right)+\left(4v-12\right) તરીકે ફરીથી લખો.
v\left(v-3\right)+4\left(v-3\right)
પ્રથમ સમૂહમાં v અને બીજા સમૂહમાં 4 ના અવયવ પાડો.
\left(v-3\right)\left(v+4\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ v-3 ના અવયવ પાડો.
v=3 v=-4
સમીકરણનો ઉકેલ શોધવા માટે, v-3=0 અને v+4=0 ઉકેલો.
v^{2}+v-12=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
v=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે 1 ને, અને c માટે -12 ને બદલીને મૂકો.
v=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
વર્ગ 1.
v=\frac{-1±\sqrt{1+48}}{2}
-12 ને -4 વાર ગુણાકાર કરો.
v=\frac{-1±\sqrt{49}}{2}
48 માં 1 ઍડ કરો.
v=\frac{-1±7}{2}
49 નો વર્ગ મૂળ લો.
v=\frac{6}{2}
હવે v=\frac{-1±7}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 7 માં -1 ઍડ કરો.
v=3
6 નો 2 થી ભાગાકાર કરો.
v=-\frac{8}{2}
હવે v=\frac{-1±7}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી 7 ને ઘટાડો.
v=-4
-8 નો 2 થી ભાગાકાર કરો.
v=3 v=-4
સમીકરણ હવે ઉકેલાઈ ગયું છે.
v^{2}+v-12=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
v^{2}+v-12-\left(-12\right)=-\left(-12\right)
સમીકરણની બન્ને બાજુ 12 ઍડ કરો.
v^{2}+v=-\left(-12\right)
સ્વયંમાંથી -12 ઘટાડવા પર 0 બચે.
v^{2}+v=12
0 માંથી -12 ને ઘટાડો.
v^{2}+v+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
1, x પદના ગુણાંકને, \frac{1}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{1}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
v^{2}+v+\frac{1}{4}=12+\frac{1}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{1}{2} નો વર્ગ કાઢો.
v^{2}+v+\frac{1}{4}=\frac{49}{4}
\frac{1}{4} માં 12 ઍડ કરો.
\left(v+\frac{1}{2}\right)^{2}=\frac{49}{4}
અવયવ v^{2}+v+\frac{1}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(v+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
v+\frac{1}{2}=\frac{7}{2} v+\frac{1}{2}=-\frac{7}{2}
સરળ બનાવો.
v=3 v=-4
સમીકરણની બન્ને બાજુથી \frac{1}{2} નો ઘટાડો કરો.