k માટે ઉકેલો
k=3
k=2
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
±18,±9,±6,±3,±2,±1
સંમેય વર્ગમૂળ પ્રમય દ્વારા, બહુપદીના બધા સંમેય વર્ગમૂળ સ્વરૂપ \frac{p}{q} માં છે, જ્યાં p, અચલ પદ -18 ને વિભાજીત કરે છે અને q , અગ્રણી સહગુણક 1 ને વિભાજિત કરે છે. બધા ઉમેદવારોની સૂચિ \frac{p}{q}.
k=2
પૂર્ણ મૂલ્ય દ્વારા નાનાથી પ્રારંભ કરીને, પૂર્ણાંકનાં તમામ મૂલ્યોને અજમાવીને આવા એક વર્ગને શોધો. જો પૂર્ણાંક વર્ણ ન મળે તો અપૂર્ણાંકો અજમાવી જુઓ.
k^{2}-6k+9=0
અવયવ પ્રમેય દ્વારા, k-k એ દરેક વર્ગમૂળ k માટે બહુપદીનો અવયવ છે. k^{2}-6k+9 મેળવવા માટે k^{3}-8k^{2}+21k-18 નો k-2 થી ભાગાકાર કરો. જ્યાં પરિણામ 0 સમાન હોય ત્યાં સમીકરણ ઉકેલો.
k=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 9}}{2}
ફોર્મના બધા સમીકરણો ax^{2}+bx+c=0 ને દ્વિઘાત સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરીને હલ કરી શકાય છે. દ્વિઘાત સૂત્રમાં a માટે 1, b માટે -6 અને c માટે 9 સબસ્ટિટ્યુટ છે.
k=\frac{6±0}{2}
ગણતરી કરશો નહીં.
k=3
ઉકેલો સમાન જ છે.
k=2 k=3
તમામ મળેલ ઉકેલોની સૂચી.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}