મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=-5 ab=2\times 3=6
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 2x^{2}+ax+bx+3 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-6 -2,-3
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 6 આપે છે.
-1-6=-7 -2-3=-5
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-3 b=-2
સમાધાન એ જોડી છે જે સરવાળો -5 આપે છે.
\left(2x^{2}-3x\right)+\left(-2x+3\right)
2x^{2}-5x+3 ને \left(2x^{2}-3x\right)+\left(-2x+3\right) તરીકે ફરીથી લખો.
x\left(2x-3\right)-\left(2x-3\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(2x-3\right)\left(x-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x-3 ના અવયવ પાડો.
2x^{2}-5x+3=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 3}}{2\times 2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\times 3}}{2\times 2}
વર્ગ -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\times 3}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2\times 2}
3 ને -8 વાર ગુણાકાર કરો.
x=\frac{-\left(-5\right)±\sqrt{1}}{2\times 2}
-24 માં 25 ઍડ કરો.
x=\frac{-\left(-5\right)±1}{2\times 2}
1 નો વર્ગ મૂળ લો.
x=\frac{5±1}{2\times 2}
-5 નો વિરોધી 5 છે.
x=\frac{5±1}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{6}{4}
હવે x=\frac{5±1}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 1 માં 5 ઍડ કરો.
x=\frac{3}{2}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{6}{4} ને ઘટાડો.
x=\frac{4}{4}
હવે x=\frac{5±1}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 5 માંથી 1 ને ઘટાડો.
x=1
4 નો 4 થી ભાગાકાર કરો.
2x^{2}-5x+3=2\left(x-\frac{3}{2}\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{3}{2} અને x_{2} ને બદલે 1 મૂકો.
2x^{2}-5x+3=2\times \frac{2x-3}{2}\left(x-1\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને x માંથી \frac{3}{2} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
2x^{2}-5x+3=\left(2x-3\right)\left(x-1\right)
2 અને 2 માં ગુરુત્તમ સામાન્ય અવયવ 2 ની બહાર રદ કરો.