મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=-3 ab=2\left(-5\right)=-10
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 2x^{2}+ax+bx-5 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-10 2,-5
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -10 આપે છે.
1-10=-9 2-5=-3
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-5 b=2
સમાધાન એ જોડી છે જે સરવાળો -3 આપે છે.
\left(2x^{2}-5x\right)+\left(2x-5\right)
2x^{2}-3x-5 ને \left(2x^{2}-5x\right)+\left(2x-5\right) તરીકે ફરીથી લખો.
x\left(2x-5\right)+2x-5
2x^{2}-5x માં x ના અવયવ પાડો.
\left(2x-5\right)\left(x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x-5 ના અવયવ પાડો.
2x^{2}-3x-5=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
વર્ગ -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
-5 ને -8 વાર ગુણાકાર કરો.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
40 માં 9 ઍડ કરો.
x=\frac{-\left(-3\right)±7}{2\times 2}
49 નો વર્ગ મૂળ લો.
x=\frac{3±7}{2\times 2}
-3 નો વિરોધી 3 છે.
x=\frac{3±7}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{10}{4}
હવે x=\frac{3±7}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 7 માં 3 ઍડ કરો.
x=\frac{5}{2}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{10}{4} ને ઘટાડો.
x=-\frac{4}{4}
હવે x=\frac{3±7}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 3 માંથી 7 ને ઘટાડો.
x=-1
-4 નો 4 થી ભાગાકાર કરો.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{5}{2} અને x_{2} ને બદલે -1 મૂકો.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x+1\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
2x^{2}-3x-5=2\times \frac{2x-5}{2}\left(x+1\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને x માંથી \frac{5}{2} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
2x^{2}-3x-5=\left(2x-5\right)\left(x+1\right)
2 અને 2 માં ગુરુત્તમ સામાન્ય અવયવ 2 ની બહાર રદ કરો.