મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x^{2}+x-1=0
બન્ને બાજુથી 1 ઘટાડો.
a+b=1 ab=2\left(-1\right)=-2
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની 2x^{2}+ax+bx-1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=-1 b=2
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(2x^{2}-x\right)+\left(2x-1\right)
2x^{2}+x-1 ને \left(2x^{2}-x\right)+\left(2x-1\right) તરીકે ફરીથી લખો.
x\left(2x-1\right)+2x-1
2x^{2}-x માં x ના અવયવ પાડો.
\left(2x-1\right)\left(x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x-1 ના અવયવ પાડો.
x=\frac{1}{2} x=-1
સમીકરણનો ઉકેલ શોધવા માટે, 2x-1=0 અને x+1=0 ઉકેલો.
2x^{2}+x=1
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
2x^{2}+x-1=1-1
સમીકરણની બન્ને બાજુથી 1 નો ઘટાડો કરો.
2x^{2}+x-1=0
સ્વયંમાંથી 1 ઘટાડવા પર 0 બચે.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે 1 ને, અને c માટે -1 ને બદલીને મૂકો.
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
વર્ગ 1.
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{1+8}}{2\times 2}
-1 ને -8 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{9}}{2\times 2}
8 માં 1 ઍડ કરો.
x=\frac{-1±3}{2\times 2}
9 નો વર્ગ મૂળ લો.
x=\frac{-1±3}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{2}{4}
હવે x=\frac{-1±3}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 3 માં -1 ઍડ કરો.
x=\frac{1}{2}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{2}{4} ને ઘટાડો.
x=-\frac{4}{4}
હવે x=\frac{-1±3}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી 3 ને ઘટાડો.
x=-1
-4 નો 4 થી ભાગાકાર કરો.
x=\frac{1}{2} x=-1
સમીકરણ હવે ઉકેલાઈ ગયું છે.
2x^{2}+x=1
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{2x^{2}+x}{2}=\frac{1}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}+\frac{1}{2}x=\frac{1}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2}, x પદના ગુણાંકને, \frac{1}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{1}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{1}{4} નો વર્ગ કાઢો.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{16} માં \frac{1}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
અવયવ x^{2}+\frac{1}{2}x+\frac{1}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
સરળ બનાવો.
x=\frac{1}{2} x=-1
સમીકરણની બન્ને બાજુથી \frac{1}{4} નો ઘટાડો કરો.