અવયવ
\left(a-1\right)\left(2a-3\right)\left(a+2\right)
મૂલ્યાંકન કરો
\left(a-1\right)\left(2a-3\right)\left(a+2\right)
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\left(2a-3\right)\left(a^{2}+a-2\right)
સંમેય વર્ગમૂળ પ્રમય દ્વારા, બહુપદીના બધા સંમેય વર્ગમૂળ સ્વરૂપ \frac{p}{q} માં છે, જ્યાં p, અચલ પદ 6 ને વિભાજીત કરે છે અને q , અગ્રણી સહગુણક 2 ને વિભાજિત કરે છે. આવું એક અવયવ \frac{3}{2} છે. 2a-3 દ્વારા તેને વિભાજીત કરીને બહુપદીના અવયવ કરો.
p+q=1 pq=1\left(-2\right)=-2
a^{2}+a-2 ગણતરી કરો. સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને a^{2}+pa+qa-2 તરીકે ફરીથી લખવાની જરૂર છે. p અને q ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
p=-1 q=2
pq ઋણાત્મક હોવાથી, p અને q વિરુદ્ધ ચિહ્ન ધરાવે છે. p+q ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(a^{2}-a\right)+\left(2a-2\right)
a^{2}+a-2 ને \left(a^{2}-a\right)+\left(2a-2\right) તરીકે ફરીથી લખો.
a\left(a-1\right)+2\left(a-1\right)
પ્રથમ સમૂહમાં a અને બીજા સમૂહમાં 2 ના અવયવ પાડો.
\left(a-1\right)\left(a+2\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ a-1 ના અવયવ પાડો.
\left(2a-3\right)\left(a-1\right)\left(a+2\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}