મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

1=x\left(2x+3\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -\frac{3}{2} ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો 2x+3 સાથે ગુણાકાર કરો.
1=2x^{2}+3x
x સાથે 2x+3 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
2x^{2}+3x=1
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
2x^{2}+3x-1=0
બન્ને બાજુથી 1 ઘટાડો.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-1\right)}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે 3 ને, અને c માટે -1 ને બદલીને મૂકો.
x=\frac{-3±\sqrt{9-4\times 2\left(-1\right)}}{2\times 2}
વર્ગ 3.
x=\frac{-3±\sqrt{9-8\left(-1\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-3±\sqrt{9+8}}{2\times 2}
-1 ને -8 વાર ગુણાકાર કરો.
x=\frac{-3±\sqrt{17}}{2\times 2}
8 માં 9 ઍડ કરો.
x=\frac{-3±\sqrt{17}}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{\sqrt{17}-3}{4}
હવે x=\frac{-3±\sqrt{17}}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \sqrt{17} માં -3 ઍડ કરો.
x=\frac{-\sqrt{17}-3}{4}
હવે x=\frac{-3±\sqrt{17}}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -3 માંથી \sqrt{17} ને ઘટાડો.
x=\frac{\sqrt{17}-3}{4} x=\frac{-\sqrt{17}-3}{4}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
1=x\left(2x+3\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ -\frac{3}{2} ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો 2x+3 સાથે ગુણાકાર કરો.
1=2x^{2}+3x
x સાથે 2x+3 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
2x^{2}+3x=1
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
\frac{2x^{2}+3x}{2}=\frac{1}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}+\frac{3}{2}x=\frac{1}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{1}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{2}, x પદના ગુણાંકને, \frac{3}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{3}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{1}{2}+\frac{9}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{3}{4} નો વર્ગ કાઢો.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{17}{16}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{9}{16} માં \frac{1}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x+\frac{3}{4}\right)^{2}=\frac{17}{16}
અવયવ x^{2}+\frac{3}{2}x+\frac{9}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{3}{4}=\frac{\sqrt{17}}{4} x+\frac{3}{4}=-\frac{\sqrt{17}}{4}
સરળ બનાવો.
x=\frac{\sqrt{17}-3}{4} x=\frac{-\sqrt{17}-3}{4}
સમીકરણની બન્ને બાજુથી \frac{3}{4} નો ઘટાડો કરો.