મુખ્ય સમાવિષ્ટ પર જાવ
a માટે ઉકેલો
Tick mark Image
b માટે ઉકેલો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
સમીકરણની બન્ને બાજુનો \left(x^{2}+c\right)^{2} સાથે ગુણાકાર કરો.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a+b\right)^{2}=a^{2}+2ab+b^{2} નો ઉપયોગ કરો.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
કોઈ સંખ્યાની ઘાતને બીજી ઘાત પર વધારવા માટે, ઘાતાંકોનો ગુણાકાર કરો. 4 મેળવવા માટે 2 અને 2 નો ગુણાકાર કરો.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x સાથે x^{4}+2x^{2}c+c^{2} નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
બંને સાઇડ્સ માટે 2bx ઍડ કરો.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
પદોને પુનઃક્રમાંકિત કરો.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
a નો સમાવેશ કરતા બધા પદોને એકસાથે કરો.
\left(c-x^{2}\right)a=2bx
સમીકરણ માનક ફૉર્મમાં છે.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
બન્ને બાજુનો -x^{2}+c થી ભાગાકાર કરો.
a=\frac{2bx}{c-x^{2}}
-x^{2}+c થી ભાગાકાર કરવાથી -x^{2}+c સાથે ગુણાકારને પૂર્વવત્ કરે છે.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
સમીકરણની બન્ને બાજુનો \left(x^{2}+c\right)^{2} સાથે ગુણાકાર કરો.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a+b\right)^{2}=a^{2}+2ab+b^{2} નો ઉપયોગ કરો.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
કોઈ સંખ્યાની ઘાતને બીજી ઘાત પર વધારવા માટે, ઘાતાંકોનો ગુણાકાર કરો. 4 મેળવવા માટે 2 અને 2 નો ગુણાકાર કરો.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x સાથે x^{4}+2x^{2}c+c^{2} નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
બન્ને બાજુથી \left(-a\right)x^{2} ઘટાડો.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
બન્ને બાજુથી ac ઘટાડો.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
1 મેળવવા માટે -1 સાથે -1 નો ગુણાકાર કરો.
\left(-2x\right)b=ax^{2}-ac
સમીકરણ માનક ફૉર્મમાં છે.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
બન્ને બાજુનો -2x થી ભાગાકાર કરો.
b=\frac{a\left(x^{2}-c\right)}{-2x}
-2x થી ભાગાકાર કરવાથી -2x સાથે ગુણાકારને પૂર્વવત્ કરે છે.
b=-\frac{ax}{2}+\frac{ac}{2x}
a\left(x^{2}-c\right) નો -2x થી ભાગાકાર કરો.