d માટે ઉકેલો
d=-\frac{3c-4}{c+1}
c\neq -1
c માટે ઉકેલો
c=-\frac{d-4}{d+3}
d\neq -3
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
c\left(d+3\right)=4-d
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ d એ -3 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો d+3 સાથે ગુણાકાર કરો.
cd+3c=4-d
c સાથે d+3 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
cd+3c+d=4
બંને સાઇડ્સ માટે d ઍડ કરો.
cd+d=4-3c
બન્ને બાજુથી 3c ઘટાડો.
\left(c+1\right)d=4-3c
d નો સમાવેશ કરતા બધા પદોને એકસાથે કરો.
\frac{\left(c+1\right)d}{c+1}=\frac{4-3c}{c+1}
બન્ને બાજુનો c+1 થી ભાગાકાર કરો.
d=\frac{4-3c}{c+1}
c+1 થી ભાગાકાર કરવાથી c+1 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
d=\frac{4-3c}{c+1}\text{, }d\neq -3
ચલ d એ -3 ની સમાન હોઈ શકે નહીં.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}