અવયવ
\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(b^{4}+1\right)
મૂલ્યાંકન કરો
\left(a^{4}-1\right)\left(b^{4}+1\right)
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a^{4}\left(b^{4}+1\right)-\left(b^{4}+1\right)
a^{4}-b^{4}+a^{4}b^{4}-1=\left(a^{4}b^{4}+a^{4}\right)+\left(-b^{4}-1\right) ને સમૂહીકૃત કરો અને પ્રથમ સમૂહમાં a^{4} અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(b^{4}+1\right)\left(a^{4}-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ b^{4}+1 ના અવયવ પાડો.
\left(a^{2}-1\right)\left(a^{2}+1\right)
a^{4}-1 ગણતરી કરો. a^{4}-1 ને \left(a^{2}\right)^{2}-1^{2} તરીકે ફરીથી લખો. આ નિયમનો ઉપયોગ કરીને ચોરસના તફાવતના અવયવ પાડી શકાય છે:p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)
a^{2}-1 ગણતરી કરો. a^{2}-1 ને a^{2}-1^{2} તરીકે ફરીથી લખો. આ નિયમનો ઉપયોગ કરીને ચોરસના તફાવતના અવયવ પાડી શકાય છે:p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(b^{4}+1\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો. નીચેની બહુપદીઓના અવયવ કરેલ નથી કેમ કે તેમની પાસે કોઈ સંમેય વર્ગમૂળ નથી: a^{2}+1,b^{4}+1.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}