મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

p+q=-10 pq=1\times 25=25
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને a^{2}+pa+qa+25 તરીકે ફરીથી લખવાની જરૂર છે. p અને q ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-25 -5,-5
pq ઘનાત્મક હોવાથી, p અને q સમાન ચિહ્ન ધરાવે છે. p+q ઋણાત્મક હોવાથી, બંને p અને q ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 25 આપે છે.
-1-25=-26 -5-5=-10
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
p=-5 q=-5
સમાધાન એ જોડી છે જે સરવાળો -10 આપે છે.
\left(a^{2}-5a\right)+\left(-5a+25\right)
a^{2}-10a+25 ને \left(a^{2}-5a\right)+\left(-5a+25\right) તરીકે ફરીથી લખો.
a\left(a-5\right)-5\left(a-5\right)
પ્રથમ સમૂહમાં a અને બીજા સમૂહમાં -5 ના અવયવ પાડો.
\left(a-5\right)\left(a-5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ a-5 ના અવયવ પાડો.
\left(a-5\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
factor(a^{2}-10a+25)
આ ત્રિપદી પાસે ત્રિપદી વર્ગનો પ્રપત્ર છે, કદાચ એ માટે સામાન્ય અવયવ સાથે ગુણાકાર કરો. ત્રિપદી વર્ગોનું અગ્રણી અને રિક્ત પદોના વર્ગ મૂળ શોધવાથી અવયવ કરી શકાય છે.
\sqrt{25}=5
રિક્ત પદ, 25 નો વર્ગ મૂળ શોધો.
\left(a-5\right)^{2}
ત્રિપદી વર્ગ એ દ્વિપદીનો વર્ગ છે જે અગ્રણી અને ત્રિપદી વર્ગના મધ્ય પદના ચિહ્ન દ્વારા નક્કી કરેલ ચિહ્ન સાથે, રિક્ત પદોના વર્ગ મૂળોનું કુલ અથવા તફાવત છે.
a^{2}-10a+25=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
વર્ગ -10.
a=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
25 ને -4 વાર ગુણાકાર કરો.
a=\frac{-\left(-10\right)±\sqrt{0}}{2}
-100 માં 100 ઍડ કરો.
a=\frac{-\left(-10\right)±0}{2}
0 નો વર્ગ મૂળ લો.
a=\frac{10±0}{2}
-10 નો વિરોધી 10 છે.
a^{2}-10a+25=\left(a-5\right)\left(a-5\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 5 અને x_{2} ને બદલે 5 મૂકો.