મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

p+q=2 pq=1\times 1=1
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને a^{2}+pa+qa+1 તરીકે ફરીથી લખવાની જરૂર છે. p અને q ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
p=1 q=1
pq ઘનાત્મક હોવાથી, p અને q સમાન ચિહ્ન ધરાવે છે. p+q ઘનાત્મક હોવાથી, બંને p અને q ઘનાત્મક છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(a^{2}+a\right)+\left(a+1\right)
a^{2}+2a+1 ને \left(a^{2}+a\right)+\left(a+1\right) તરીકે ફરીથી લખો.
a\left(a+1\right)+a+1
a^{2}+a માં a ના અવયવ પાડો.
\left(a+1\right)\left(a+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ a+1 ના અવયવ પાડો.
\left(a+1\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
factor(a^{2}+2a+1)
આ ત્રિપદી પાસે ત્રિપદી વર્ગનો પ્રપત્ર છે, કદાચ એ માટે સામાન્ય અવયવ સાથે ગુણાકાર કરો. ત્રિપદી વર્ગોનું અગ્રણી અને રિક્ત પદોના વર્ગ મૂળ શોધવાથી અવયવ કરી શકાય છે.
\left(a+1\right)^{2}
ત્રિપદી વર્ગ એ દ્વિપદીનો વર્ગ છે જે અગ્રણી અને ત્રિપદી વર્ગના મધ્ય પદના ચિહ્ન દ્વારા નક્કી કરેલ ચિહ્ન સાથે, રિક્ત પદોના વર્ગ મૂળોનું કુલ અથવા તફાવત છે.
a^{2}+2a+1=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
a=\frac{-2±\sqrt{2^{2}-4}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
a=\frac{-2±\sqrt{4-4}}{2}
વર્ગ 2.
a=\frac{-2±\sqrt{0}}{2}
-4 માં 4 ઍડ કરો.
a=\frac{-2±0}{2}
0 નો વર્ગ મૂળ લો.
a^{2}+2a+1=\left(a-\left(-1\right)\right)\left(a-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -1 અને x_{2} ને બદલે -1 મૂકો.
a^{2}+2a+1=\left(a+1\right)\left(a+1\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.