M માટે ઉકેલો
M=2|\sin(x)|+\cos(2x)
x માટે ઉકેલો
x=\pi +2\pi n_{2}+\left(-1\right)arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})\text{, }n_{2}\in \mathrm{Z}\text{, }\exists n_{84}\in \mathrm{Z}\text{ : }\left(not(\pi +2\pi n_{2}+\left(-1\right)arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})<2n_{84}\pi )\text{ and }not(\pi +2\pi n_{2}+\left(-1\right)arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})>\pi +2n_{84}\pi )\right)
x=arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }\exists n_{84}\in \mathrm{Z}\text{ : }\left(not(arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2\pi n_{1}<2n_{84}\pi )\text{ and }not(arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2\pi n_{1}>\pi +2n_{84}\pi )\right)
x=\pi +2\pi n_{29}+\left(-1\right)arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})\text{, }n_{29}\in \mathrm{Z}\text{, }\exists n_{84}\in \mathrm{Z}\text{ : }\left(not(\pi +2\pi n_{29}+\left(-1\right)arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})<2n_{84}\pi )\text{ and }not(\pi +2\pi n_{29}+\left(-1\right)arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})>\pi +2n_{84}\pi )\right)
x=arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2n_{28}\pi \text{, }n_{28}\in \mathrm{Z}\text{, }\exists n_{84}\in \mathrm{Z}\text{ : }\left(not(arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2n_{28}\pi <2n_{84}\pi )\text{ and }not(arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2n_{28}\pi >\pi +2n_{84}\pi )\right)
x=\pi +2\pi n_{86}+arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})\text{, }n_{86}\in \mathrm{Z}\text{, }not(SinI(\pi +2\pi n_{86}+arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}}))>0)
x=\left(-1\right)arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2\pi n_{85}\text{, }n_{85}\in \mathrm{Z}\text{, }not(SinI(\left(-1\right)arcSin(\frac{1}{2}+\left(-\frac{1}{2}\right)\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2\pi n_{85})>0)
x=\pi +2n_{108}\pi +arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})\text{, }n_{108}\in \mathrm{Z}\text{, }not(SinI(\pi +2n_{108}\pi +arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}}))>0)
x=\left(-1\right)arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2n_{296}\pi \text{, }n_{296}\in \mathrm{Z}\text{, }not(SinI(\left(-1\right)arcSin(\frac{1}{2}+\frac{1}{2}\left(3+\left(-2\right)M\right)^{\frac{1}{2}})+2n_{296}\pi )>0)
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}