મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=1 ab=2\left(-15\right)=-30
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 2x^{2}+ax+bx-15 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,30 -2,15 -3,10 -5,6
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -30 આપે છે.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-5 b=6
સમાધાન એ જોડી છે જે સરવાળો 1 આપે છે.
\left(2x^{2}-5x\right)+\left(6x-15\right)
2x^{2}+x-15 ને \left(2x^{2}-5x\right)+\left(6x-15\right) તરીકે ફરીથી લખો.
x\left(2x-5\right)+3\left(2x-5\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 3 ના અવયવ પાડો.
\left(2x-5\right)\left(x+3\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x-5 ના અવયવ પાડો.
2x^{2}+x-15=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-15\right)}}{2\times 2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-1±\sqrt{1-4\times 2\left(-15\right)}}{2\times 2}
વર્ગ 1.
x=\frac{-1±\sqrt{1-8\left(-15\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{1+120}}{2\times 2}
-15 ને -8 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{121}}{2\times 2}
120 માં 1 ઍડ કરો.
x=\frac{-1±11}{2\times 2}
121 નો વર્ગ મૂળ લો.
x=\frac{-1±11}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{10}{4}
હવે x=\frac{-1±11}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 11 માં -1 ઍડ કરો.
x=\frac{5}{2}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{10}{4} ને ઘટાડો.
x=-\frac{12}{4}
હવે x=\frac{-1±11}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી 11 ને ઘટાડો.
x=-3
-12 નો 4 થી ભાગાકાર કરો.
2x^{2}+x-15=2\left(x-\frac{5}{2}\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{5}{2} અને x_{2} ને બદલે -3 મૂકો.
2x^{2}+x-15=2\left(x-\frac{5}{2}\right)\left(x+3\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
2x^{2}+x-15=2\times \frac{2x-5}{2}\left(x+3\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને x માંથી \frac{5}{2} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
2x^{2}+x-15=\left(2x-5\right)\left(x+3\right)
2 અને 2 માં ગુરુત્તમ સામાન્ય અવયવ 2 ની બહાર રદ કરો.