મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=-30 ab=9\times 25=225
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 9x^{2}+ax+bx+25 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 225 આપે છે.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-15 b=-15
સમાધાન એ જોડી છે જે સરવાળો -30 આપે છે.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
9x^{2}-30x+25 ને \left(9x^{2}-15x\right)+\left(-15x+25\right) તરીકે ફરીથી લખો.
3x\left(3x-5\right)-5\left(3x-5\right)
પ્રથમ સમૂહમાં 3x અને બીજા સમૂહમાં -5 ના અવયવ પાડો.
\left(3x-5\right)\left(3x-5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 3x-5 ના અવયવ પાડો.
\left(3x-5\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
factor(9x^{2}-30x+25)
આ ત્રિપદી પાસે ત્રિપદી વર્ગનો પ્રપત્ર છે, કદાચ એ માટે સામાન્ય અવયવ સાથે ગુણાકાર કરો. ત્રિપદી વર્ગોનું અગ્રણી અને રિક્ત પદોના વર્ગ મૂળ શોધવાથી અવયવ કરી શકાય છે.
gcf(9,-30,25)=1
ગુણાંકોના ગુરુત્તમ સામાન્ય અવયવને શોધો.
\sqrt{9x^{2}}=3x
અગ્રણી પદ, 9x^{2} નો વર્ગ મૂળ શોધો.
\sqrt{25}=5
રિક્ત પદ, 25 નો વર્ગ મૂળ શોધો.
\left(3x-5\right)^{2}
ત્રિપદી વર્ગ એ દ્વિપદીનો વર્ગ છે જે અગ્રણી અને ત્રિપદી વર્ગના મધ્ય પદના ચિહ્ન દ્વારા નક્કી કરેલ ચિહ્ન સાથે, રિક્ત પદોના વર્ગ મૂળોનું કુલ અથવા તફાવત છે.
9x^{2}-30x+25=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
વર્ગ -30.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
9 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
25 ને -36 વાર ગુણાકાર કરો.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
-900 માં 900 ઍડ કરો.
x=\frac{-\left(-30\right)±0}{2\times 9}
0 નો વર્ગ મૂળ લો.
x=\frac{30±0}{2\times 9}
-30 નો વિરોધી 30 છે.
x=\frac{30±0}{18}
9 ને 2 વાર ગુણાકાર કરો.
9x^{2}-30x+25=9\left(x-\frac{5}{3}\right)\left(x-\frac{5}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{5}{3} અને x_{2} ને બદલે \frac{5}{3} મૂકો.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\left(x-\frac{5}{3}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને x માંથી \frac{5}{3} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\times \frac{3x-5}{3}
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને x માંથી \frac{5}{3} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{3\times 3}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{3x-5}{3} નો \frac{3x-5}{3} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{9}
3 ને 3 વાર ગુણાકાર કરો.
9x^{2}-30x+25=\left(3x-5\right)\left(3x-5\right)
9 અને 9 માં ગુરુત્તમ સામાન્ય અવયવ 9 ની બહાર રદ કરો.