અવયવ
\left(2x+1\right)\left(4x+5\right)
મૂલ્યાંકન કરો
\left(2x+1\right)\left(4x+5\right)
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=14 ab=8\times 5=40
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 8x^{2}+ax+bx+5 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,40 2,20 4,10 5,8
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 40 આપે છે.
1+40=41 2+20=22 4+10=14 5+8=13
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=4 b=10
સમાધાન એ જોડી છે જે સરવાળો 14 આપે છે.
\left(8x^{2}+4x\right)+\left(10x+5\right)
8x^{2}+14x+5 ને \left(8x^{2}+4x\right)+\left(10x+5\right) તરીકે ફરીથી લખો.
4x\left(2x+1\right)+5\left(2x+1\right)
પ્રથમ સમૂહમાં 4x અને બીજા સમૂહમાં 5 ના અવયવ પાડો.
\left(2x+1\right)\left(4x+5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x+1 ના અવયવ પાડો.
8x^{2}+14x+5=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-14±\sqrt{14^{2}-4\times 8\times 5}}{2\times 8}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-14±\sqrt{196-4\times 8\times 5}}{2\times 8}
વર્ગ 14.
x=\frac{-14±\sqrt{196-32\times 5}}{2\times 8}
8 ને -4 વાર ગુણાકાર કરો.
x=\frac{-14±\sqrt{196-160}}{2\times 8}
5 ને -32 વાર ગુણાકાર કરો.
x=\frac{-14±\sqrt{36}}{2\times 8}
-160 માં 196 ઍડ કરો.
x=\frac{-14±6}{2\times 8}
36 નો વર્ગ મૂળ લો.
x=\frac{-14±6}{16}
8 ને 2 વાર ગુણાકાર કરો.
x=-\frac{8}{16}
હવે x=\frac{-14±6}{16} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 6 માં -14 ઍડ કરો.
x=-\frac{1}{2}
8 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-8}{16} ને ઘટાડો.
x=-\frac{20}{16}
હવે x=\frac{-14±6}{16} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -14 માંથી 6 ને ઘટાડો.
x=-\frac{5}{4}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-20}{16} ને ઘટાડો.
8x^{2}+14x+5=8\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\left(-\frac{5}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -\frac{1}{2} અને x_{2} ને બદલે -\frac{5}{4} મૂકો.
8x^{2}+14x+5=8\left(x+\frac{1}{2}\right)\left(x+\frac{5}{4}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
8x^{2}+14x+5=8\times \frac{2x+1}{2}\left(x+\frac{5}{4}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{1}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
8x^{2}+14x+5=8\times \frac{2x+1}{2}\times \frac{4x+5}{4}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{5}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
8x^{2}+14x+5=8\times \frac{\left(2x+1\right)\left(4x+5\right)}{2\times 4}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{2x+1}{2} નો \frac{4x+5}{4} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
8x^{2}+14x+5=8\times \frac{\left(2x+1\right)\left(4x+5\right)}{8}
4 ને 2 વાર ગુણાકાર કરો.
8x^{2}+14x+5=\left(2x+1\right)\left(4x+5\right)
8 અને 8 માં ગુરુત્તમ સામાન્ય અવયવ 8 ની બહાર રદ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}