અવયવ
\left(2v+5\right)\left(4v+3\right)
મૂલ્યાંકન કરો
\left(2v+5\right)\left(4v+3\right)
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=26 ab=8\times 15=120
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 8v^{2}+av+bv+15 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 120 આપે છે.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=6 b=20
સમાધાન એ જોડી છે જે સરવાળો 26 આપે છે.
\left(8v^{2}+6v\right)+\left(20v+15\right)
8v^{2}+26v+15 ને \left(8v^{2}+6v\right)+\left(20v+15\right) તરીકે ફરીથી લખો.
2v\left(4v+3\right)+5\left(4v+3\right)
પ્રથમ સમૂહમાં 2v અને બીજા સમૂહમાં 5 ના અવયવ પાડો.
\left(4v+3\right)\left(2v+5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 4v+3 ના અવયવ પાડો.
8v^{2}+26v+15=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
v=\frac{-26±\sqrt{26^{2}-4\times 8\times 15}}{2\times 8}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
v=\frac{-26±\sqrt{676-4\times 8\times 15}}{2\times 8}
વર્ગ 26.
v=\frac{-26±\sqrt{676-32\times 15}}{2\times 8}
8 ને -4 વાર ગુણાકાર કરો.
v=\frac{-26±\sqrt{676-480}}{2\times 8}
15 ને -32 વાર ગુણાકાર કરો.
v=\frac{-26±\sqrt{196}}{2\times 8}
-480 માં 676 ઍડ કરો.
v=\frac{-26±14}{2\times 8}
196 નો વર્ગ મૂળ લો.
v=\frac{-26±14}{16}
8 ને 2 વાર ગુણાકાર કરો.
v=-\frac{12}{16}
હવે v=\frac{-26±14}{16} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 14 માં -26 ઍડ કરો.
v=-\frac{3}{4}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-12}{16} ને ઘટાડો.
v=-\frac{40}{16}
હવે v=\frac{-26±14}{16} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -26 માંથી 14 ને ઘટાડો.
v=-\frac{5}{2}
8 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-40}{16} ને ઘટાડો.
8v^{2}+26v+15=8\left(v-\left(-\frac{3}{4}\right)\right)\left(v-\left(-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -\frac{3}{4} અને x_{2} ને બદલે -\frac{5}{2} મૂકો.
8v^{2}+26v+15=8\left(v+\frac{3}{4}\right)\left(v+\frac{5}{2}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
8v^{2}+26v+15=8\times \frac{4v+3}{4}\left(v+\frac{5}{2}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને v માં \frac{3}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
8v^{2}+26v+15=8\times \frac{4v+3}{4}\times \frac{2v+5}{2}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને v માં \frac{5}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
8v^{2}+26v+15=8\times \frac{\left(4v+3\right)\left(2v+5\right)}{4\times 2}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{4v+3}{4} નો \frac{2v+5}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
8v^{2}+26v+15=8\times \frac{\left(4v+3\right)\left(2v+5\right)}{8}
2 ને 4 વાર ગુણાકાર કરો.
8v^{2}+26v+15=\left(4v+3\right)\left(2v+5\right)
8 અને 8 માં ગુરુત્તમ સામાન્ય અવયવ 8 ની બહાર રદ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}