x માટે ઉકેલો
x=\frac{1}{3}\approx 0.333333333
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
6x-1-9x^{2}=0
બન્ને બાજુથી 9x^{2} ઘટાડો.
-9x^{2}+6x-1=0
તેને માનક ફૉર્મમાં મૂકવા માટે બહુપદી ફરી ગોઠવો. પદોને સૌથી વધુથી સૌથી ઓછા ઘાત ક્રમમાં ગોઠવો.
a+b=6 ab=-9\left(-1\right)=9
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની -9x^{2}+ax+bx-1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,9 3,3
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 9 આપે છે.
1+9=10 3+3=6
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=3 b=3
સમાધાન એ જોડી છે જે સરવાળો 6 આપે છે.
\left(-9x^{2}+3x\right)+\left(3x-1\right)
-9x^{2}+6x-1 ને \left(-9x^{2}+3x\right)+\left(3x-1\right) તરીકે ફરીથી લખો.
-3x\left(3x-1\right)+3x-1
-9x^{2}+3x માં -3x ના અવયવ પાડો.
\left(3x-1\right)\left(-3x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 3x-1 ના અવયવ પાડો.
x=\frac{1}{3} x=\frac{1}{3}
સમીકરણનો ઉકેલ શોધવા માટે, 3x-1=0 અને -3x+1=0 ઉકેલો.
6x-1-9x^{2}=0
બન્ને બાજુથી 9x^{2} ઘટાડો.
-9x^{2}+6x-1=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-6±\sqrt{6^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -9 ને, b માટે 6 ને, અને c માટે -1 ને બદલીને મૂકો.
x=\frac{-6±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
વર્ગ 6.
x=\frac{-6±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
-9 ને -4 વાર ગુણાકાર કરો.
x=\frac{-6±\sqrt{36-36}}{2\left(-9\right)}
-1 ને 36 વાર ગુણાકાર કરો.
x=\frac{-6±\sqrt{0}}{2\left(-9\right)}
-36 માં 36 ઍડ કરો.
x=-\frac{6}{2\left(-9\right)}
0 નો વર્ગ મૂળ લો.
x=-\frac{6}{-18}
-9 ને 2 વાર ગુણાકાર કરો.
x=\frac{1}{3}
6 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-6}{-18} ને ઘટાડો.
6x-1-9x^{2}=0
બન્ને બાજુથી 9x^{2} ઘટાડો.
6x-9x^{2}=1
બંને સાઇડ્સ માટે 1 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
-9x^{2}+6x=1
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{-9x^{2}+6x}{-9}=\frac{1}{-9}
બન્ને બાજુનો -9 થી ભાગાકાર કરો.
x^{2}+\frac{6}{-9}x=\frac{1}{-9}
-9 થી ભાગાકાર કરવાથી -9 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-\frac{2}{3}x=\frac{1}{-9}
3 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{6}{-9} ને ઘટાડો.
x^{2}-\frac{2}{3}x=-\frac{1}{9}
1 નો -9 થી ભાગાકાર કરો.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3}, x પદના ગુણાંકને, -\frac{1}{3} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{1}{3} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{1}{3} નો વર્ગ કાઢો.
x^{2}-\frac{2}{3}x+\frac{1}{9}=0
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{9} માં -\frac{1}{9} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x-\frac{1}{3}\right)^{2}=0
અવયવ x^{2}-\frac{2}{3}x+\frac{1}{9}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{0}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{1}{3}=0 x-\frac{1}{3}=0
સરળ બનાવો.
x=\frac{1}{3} x=\frac{1}{3}
સમીકરણની બન્ને બાજુ \frac{1}{3} ઍડ કરો.
x=\frac{1}{3}
સમીકરણ હવે ઉકેલાઈ ગયું છે. ઉકેલો સમાન જ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}