x માટે ઉકેલો (જટિલ સમાધાન)
x=\frac{-9\sqrt{3}i+9}{8}\approx 1.125-1.948557159i
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
x=\frac{9+9\sqrt{3}i}{8}\approx 1.125+1.948557159i
x માટે ઉકેલો
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
સંમેય વર્ગમૂળ પ્રમય દ્વારા, બહુપદીના બધા સંમેય વર્ગમૂળ સ્વરૂપ \frac{p}{q} માં છે, જ્યાં p, અચલ પદ 729 ને વિભાજીત કરે છે અને q , અગ્રણી સહગુણક 64 ને વિભાજિત કરે છે. બધા ઉમેદવારોની સૂચિ \frac{p}{q}.
x=-\frac{9}{4}
પૂર્ણ મૂલ્ય દ્વારા નાનાથી પ્રારંભ કરીને, પૂર્ણાંકનાં તમામ મૂલ્યોને અજમાવીને આવા એક વર્ગને શોધો. જો પૂર્ણાંક વર્ણ ન મળે તો અપૂર્ણાંકો અજમાવી જુઓ.
16x^{2}-36x+81=0
અવયવ પ્રમેય દ્વારા, x-k એ દરેક વર્ગમૂળ k માટે બહુપદીનો અવયવ છે. 16x^{2}-36x+81 મેળવવા માટે 64x^{3}+729 નો 4\left(x+\frac{9}{4}\right)=4x+9 થી ભાગાકાર કરો. જ્યાં પરિણામ 0 સમાન હોય ત્યાં સમીકરણ ઉકેલો.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ફોર્મના બધા સમીકરણો ax^{2}+bx+c=0 ને દ્વિઘાત સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરીને હલ કરી શકાય છે. દ્વિઘાત સૂત્રમાં a માટે 16, b માટે -36 અને c માટે 81 સબસ્ટિટ્યુટ છે.
x=\frac{36±\sqrt{-3888}}{32}
ગણતરી કરશો નહીં.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
જ્યારે ± વત્તા અને ± ઓછા હોય સમીકરણ 16x^{2}-36x+81=0 ને ઉકેલો.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
તમામ મળેલ ઉકેલોની સૂચી.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
સંમેય વર્ગમૂળ પ્રમય દ્વારા, બહુપદીના બધા સંમેય વર્ગમૂળ સ્વરૂપ \frac{p}{q} માં છે, જ્યાં p, અચલ પદ 729 ને વિભાજીત કરે છે અને q , અગ્રણી સહગુણક 64 ને વિભાજિત કરે છે. બધા ઉમેદવારોની સૂચિ \frac{p}{q}.
x=-\frac{9}{4}
પૂર્ણ મૂલ્ય દ્વારા નાનાથી પ્રારંભ કરીને, પૂર્ણાંકનાં તમામ મૂલ્યોને અજમાવીને આવા એક વર્ગને શોધો. જો પૂર્ણાંક વર્ણ ન મળે તો અપૂર્ણાંકો અજમાવી જુઓ.
16x^{2}-36x+81=0
અવયવ પ્રમેય દ્વારા, x-k એ દરેક વર્ગમૂળ k માટે બહુપદીનો અવયવ છે. 16x^{2}-36x+81 મેળવવા માટે 64x^{3}+729 નો 4\left(x+\frac{9}{4}\right)=4x+9 થી ભાગાકાર કરો. જ્યાં પરિણામ 0 સમાન હોય ત્યાં સમીકરણ ઉકેલો.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ફોર્મના બધા સમીકરણો ax^{2}+bx+c=0 ને દ્વિઘાત સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરીને હલ કરી શકાય છે. દ્વિઘાત સૂત્રમાં a માટે 16, b માટે -36 અને c માટે 81 સબસ્ટિટ્યુટ છે.
x=\frac{36±\sqrt{-3888}}{32}
ગણતરી કરશો નહીં.
x\in \emptyset
કારણ કે નકારાત્મક સંખ્યાનો વર્ગમૂળ વાસ્તવિક ક્ષેત્રમાં નિર્ધારિત કરેલ નથી, કોઈ ઉકેલો નથી.
x=-\frac{9}{4}
તમામ મળેલ ઉકેલોની સૂચી.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}