મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

6x^{2}-x-40=0
બન્ને બાજુથી 40 ઘટાડો.
a+b=-1 ab=6\left(-40\right)=-240
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની 6x^{2}+ax+bx-40 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -240 આપે છે.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-16 b=15
સમાધાન એ જોડી છે જે સરવાળો -1 આપે છે.
\left(6x^{2}-16x\right)+\left(15x-40\right)
6x^{2}-x-40 ને \left(6x^{2}-16x\right)+\left(15x-40\right) તરીકે ફરીથી લખો.
2x\left(3x-8\right)+5\left(3x-8\right)
પ્રથમ સમૂહમાં 2x અને બીજા સમૂહમાં 5 ના અવયવ પાડો.
\left(3x-8\right)\left(2x+5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 3x-8 ના અવયવ પાડો.
x=\frac{8}{3} x=-\frac{5}{2}
સમીકરણનો ઉકેલ શોધવા માટે, 3x-8=0 અને 2x+5=0 ઉકેલો.
6x^{2}-x=40
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
6x^{2}-x-40=40-40
સમીકરણની બન્ને બાજુથી 40 નો ઘટાડો કરો.
6x^{2}-x-40=0
સ્વયંમાંથી 40 ઘટાડવા પર 0 બચે.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-40\right)}}{2\times 6}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 6 ને, b માટે -1 ને, અને c માટે -40 ને બદલીને મૂકો.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-40\right)}}{2\times 6}
6 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-1\right)±\sqrt{1+960}}{2\times 6}
-40 ને -24 વાર ગુણાકાર કરો.
x=\frac{-\left(-1\right)±\sqrt{961}}{2\times 6}
960 માં 1 ઍડ કરો.
x=\frac{-\left(-1\right)±31}{2\times 6}
961 નો વર્ગ મૂળ લો.
x=\frac{1±31}{2\times 6}
-1 નો વિરોધી 1 છે.
x=\frac{1±31}{12}
6 ને 2 વાર ગુણાકાર કરો.
x=\frac{32}{12}
હવે x=\frac{1±31}{12} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 31 માં 1 ઍડ કરો.
x=\frac{8}{3}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{32}{12} ને ઘટાડો.
x=-\frac{30}{12}
હવે x=\frac{1±31}{12} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 1 માંથી 31 ને ઘટાડો.
x=-\frac{5}{2}
6 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-30}{12} ને ઘટાડો.
x=\frac{8}{3} x=-\frac{5}{2}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
6x^{2}-x=40
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{6x^{2}-x}{6}=\frac{40}{6}
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x^{2}-\frac{1}{6}x=\frac{40}{6}
6 થી ભાગાકાર કરવાથી 6 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-\frac{1}{6}x=\frac{20}{3}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{40}{6} ને ઘટાડો.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{20}{3}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{6}, x પદના ગુણાંકને, -\frac{1}{12} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{1}{12} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{20}{3}+\frac{1}{144}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{1}{12} નો વર્ગ કાઢો.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{961}{144}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{144} માં \frac{20}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x-\frac{1}{12}\right)^{2}=\frac{961}{144}
અવયવ x^{2}-\frac{1}{6}x+\frac{1}{144}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{961}{144}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{1}{12}=\frac{31}{12} x-\frac{1}{12}=-\frac{31}{12}
સરળ બનાવો.
x=\frac{8}{3} x=-\frac{5}{2}
સમીકરણની બન્ને બાજુ \frac{1}{12} ઍડ કરો.