અવયવ
\left(2r-1\right)\left(3r-4\right)
મૂલ્યાંકન કરો
\left(2r-1\right)\left(3r-4\right)
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=-11 ab=6\times 4=24
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 6r^{2}+ar+br+4 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-24 -2,-12 -3,-8 -4,-6
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 24 આપે છે.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-8 b=-3
સમાધાન એ જોડી છે જે સરવાળો -11 આપે છે.
\left(6r^{2}-8r\right)+\left(-3r+4\right)
6r^{2}-11r+4 ને \left(6r^{2}-8r\right)+\left(-3r+4\right) તરીકે ફરીથી લખો.
2r\left(3r-4\right)-\left(3r-4\right)
પ્રથમ સમૂહમાં 2r અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(3r-4\right)\left(2r-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 3r-4 ના અવયવ પાડો.
6r^{2}-11r+4=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
r=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 6\times 4}}{2\times 6}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
r=\frac{-\left(-11\right)±\sqrt{121-4\times 6\times 4}}{2\times 6}
વર્ગ -11.
r=\frac{-\left(-11\right)±\sqrt{121-24\times 4}}{2\times 6}
6 ને -4 વાર ગુણાકાર કરો.
r=\frac{-\left(-11\right)±\sqrt{121-96}}{2\times 6}
4 ને -24 વાર ગુણાકાર કરો.
r=\frac{-\left(-11\right)±\sqrt{25}}{2\times 6}
-96 માં 121 ઍડ કરો.
r=\frac{-\left(-11\right)±5}{2\times 6}
25 નો વર્ગ મૂળ લો.
r=\frac{11±5}{2\times 6}
-11 નો વિરોધી 11 છે.
r=\frac{11±5}{12}
6 ને 2 વાર ગુણાકાર કરો.
r=\frac{16}{12}
હવે r=\frac{11±5}{12} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 5 માં 11 ઍડ કરો.
r=\frac{4}{3}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{16}{12} ને ઘટાડો.
r=\frac{6}{12}
હવે r=\frac{11±5}{12} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 11 માંથી 5 ને ઘટાડો.
r=\frac{1}{2}
6 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{6}{12} ને ઘટાડો.
6r^{2}-11r+4=6\left(r-\frac{4}{3}\right)\left(r-\frac{1}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{4}{3} અને x_{2} ને બદલે \frac{1}{2} મૂકો.
6r^{2}-11r+4=6\times \frac{3r-4}{3}\left(r-\frac{1}{2}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને r માંથી \frac{4}{3} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
6r^{2}-11r+4=6\times \frac{3r-4}{3}\times \frac{2r-1}{2}
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને r માંથી \frac{1}{2} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
6r^{2}-11r+4=6\times \frac{\left(3r-4\right)\left(2r-1\right)}{3\times 2}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{3r-4}{3} નો \frac{2r-1}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
6r^{2}-11r+4=6\times \frac{\left(3r-4\right)\left(2r-1\right)}{6}
2 ને 3 વાર ગુણાકાર કરો.
6r^{2}-11r+4=\left(3r-4\right)\left(2r-1\right)
6 અને 6 માં ગુરુત્તમ સામાન્ય અવયવ 6 ની બહાર રદ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}