મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=7 ab=6\left(-5\right)=-30
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની 6x^{2}+ax+bx-5 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,30 -2,15 -3,10 -5,6
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -30 આપે છે.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-3 b=10
સમાધાન એ જોડી છે જે સરવાળો 7 આપે છે.
\left(6x^{2}-3x\right)+\left(10x-5\right)
6x^{2}+7x-5 ને \left(6x^{2}-3x\right)+\left(10x-5\right) તરીકે ફરીથી લખો.
3x\left(2x-1\right)+5\left(2x-1\right)
પ્રથમ સમૂહમાં 3x અને બીજા સમૂહમાં 5 ના અવયવ પાડો.
\left(2x-1\right)\left(3x+5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x-1 ના અવયવ પાડો.
x=\frac{1}{2} x=-\frac{5}{3}
સમીકરણનો ઉકેલ શોધવા માટે, 2x-1=0 અને 3x+5=0 ઉકેલો.
6x^{2}+7x-5=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-5\right)}}{2\times 6}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 6 ને, b માટે 7 ને, અને c માટે -5 ને બદલીને મૂકો.
x=\frac{-7±\sqrt{49-4\times 6\left(-5\right)}}{2\times 6}
વર્ગ 7.
x=\frac{-7±\sqrt{49-24\left(-5\right)}}{2\times 6}
6 ને -4 વાર ગુણાકાર કરો.
x=\frac{-7±\sqrt{49+120}}{2\times 6}
-5 ને -24 વાર ગુણાકાર કરો.
x=\frac{-7±\sqrt{169}}{2\times 6}
120 માં 49 ઍડ કરો.
x=\frac{-7±13}{2\times 6}
169 નો વર્ગ મૂળ લો.
x=\frac{-7±13}{12}
6 ને 2 વાર ગુણાકાર કરો.
x=\frac{6}{12}
હવે x=\frac{-7±13}{12} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 13 માં -7 ઍડ કરો.
x=\frac{1}{2}
6 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{6}{12} ને ઘટાડો.
x=-\frac{20}{12}
હવે x=\frac{-7±13}{12} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -7 માંથી 13 ને ઘટાડો.
x=-\frac{5}{3}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-20}{12} ને ઘટાડો.
x=\frac{1}{2} x=-\frac{5}{3}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
6x^{2}+7x-5=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
6x^{2}+7x-5-\left(-5\right)=-\left(-5\right)
સમીકરણની બન્ને બાજુ 5 ઍડ કરો.
6x^{2}+7x=-\left(-5\right)
સ્વયંમાંથી -5 ઘટાડવા પર 0 બચે.
6x^{2}+7x=5
0 માંથી -5 ને ઘટાડો.
\frac{6x^{2}+7x}{6}=\frac{5}{6}
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x^{2}+\frac{7}{6}x=\frac{5}{6}
6 થી ભાગાકાર કરવાથી 6 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{5}{6}+\left(\frac{7}{12}\right)^{2}
\frac{7}{6}, x પદના ગુણાંકને, \frac{7}{12} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{7}{12} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{5}{6}+\frac{49}{144}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{7}{12} નો વર્ગ કાઢો.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{169}{144}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{49}{144} માં \frac{5}{6} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x+\frac{7}{12}\right)^{2}=\frac{169}{144}
અવયવ x^{2}+\frac{7}{6}x+\frac{49}{144}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{7}{12}=\frac{13}{12} x+\frac{7}{12}=-\frac{13}{12}
સરળ બનાવો.
x=\frac{1}{2} x=-\frac{5}{3}
સમીકરણની બન્ને બાજુથી \frac{7}{12} નો ઘટાડો કરો.