મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો (જટિલ સમાધાન)
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

5x^{2}-3x+1=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5}}{2\times 5}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 5 ને, b માટે -3 ને, અને c માટે 1 ને બદલીને મૂકો.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5}}{2\times 5}
વર્ગ -3.
x=\frac{-\left(-3\right)±\sqrt{9-20}}{2\times 5}
5 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-3\right)±\sqrt{-11}}{2\times 5}
-20 માં 9 ઍડ કરો.
x=\frac{-\left(-3\right)±\sqrt{11}i}{2\times 5}
-11 નો વર્ગ મૂળ લો.
x=\frac{3±\sqrt{11}i}{2\times 5}
-3 નો વિરોધી 3 છે.
x=\frac{3±\sqrt{11}i}{10}
5 ને 2 વાર ગુણાકાર કરો.
x=\frac{3+\sqrt{11}i}{10}
હવે x=\frac{3±\sqrt{11}i}{10} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. i\sqrt{11} માં 3 ઍડ કરો.
x=\frac{-\sqrt{11}i+3}{10}
હવે x=\frac{3±\sqrt{11}i}{10} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 3 માંથી i\sqrt{11} ને ઘટાડો.
x=\frac{3+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+3}{10}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
5x^{2}-3x+1=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
5x^{2}-3x+1-1=-1
સમીકરણની બન્ને બાજુથી 1 નો ઘટાડો કરો.
5x^{2}-3x=-1
સ્વયંમાંથી 1 ઘટાડવા પર 0 બચે.
\frac{5x^{2}-3x}{5}=-\frac{1}{5}
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x^{2}-\frac{3}{5}x=-\frac{1}{5}
5 થી ભાગાકાર કરવાથી 5 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-\frac{1}{5}+\left(-\frac{3}{10}\right)^{2}
-\frac{3}{5}, x પદના ગુણાંકને, -\frac{3}{10} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{3}{10} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{1}{5}+\frac{9}{100}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{3}{10} નો વર્ગ કાઢો.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{11}{100}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{9}{100} માં -\frac{1}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x-\frac{3}{10}\right)^{2}=-\frac{11}{100}
અવયવ x^{2}-\frac{3}{5}x+\frac{9}{100}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{11}{100}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{3}{10}=\frac{\sqrt{11}i}{10} x-\frac{3}{10}=-\frac{\sqrt{11}i}{10}
સરળ બનાવો.
x=\frac{3+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+3}{10}
સમીકરણની બન્ને બાજુ \frac{3}{10} ઍડ કરો.