મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

5x^{2}+3x-10=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-10\right)}}{2\times 5}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 5 ને, b માટે 3 ને, અને c માટે -10 ને બદલીને મૂકો.
x=\frac{-3±\sqrt{9-4\times 5\left(-10\right)}}{2\times 5}
વર્ગ 3.
x=\frac{-3±\sqrt{9-20\left(-10\right)}}{2\times 5}
5 ને -4 વાર ગુણાકાર કરો.
x=\frac{-3±\sqrt{9+200}}{2\times 5}
-10 ને -20 વાર ગુણાકાર કરો.
x=\frac{-3±\sqrt{209}}{2\times 5}
200 માં 9 ઍડ કરો.
x=\frac{-3±\sqrt{209}}{10}
5 ને 2 વાર ગુણાકાર કરો.
x=\frac{\sqrt{209}-3}{10}
હવે x=\frac{-3±\sqrt{209}}{10} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \sqrt{209} માં -3 ઍડ કરો.
x=\frac{-\sqrt{209}-3}{10}
હવે x=\frac{-3±\sqrt{209}}{10} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -3 માંથી \sqrt{209} ને ઘટાડો.
x=\frac{\sqrt{209}-3}{10} x=\frac{-\sqrt{209}-3}{10}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
5x^{2}+3x-10=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
5x^{2}+3x-10-\left(-10\right)=-\left(-10\right)
સમીકરણની બન્ને બાજુ 10 ઍડ કરો.
5x^{2}+3x=-\left(-10\right)
સ્વયંમાંથી -10 ઘટાડવા પર 0 બચે.
5x^{2}+3x=10
0 માંથી -10 ને ઘટાડો.
\frac{5x^{2}+3x}{5}=\frac{10}{5}
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x^{2}+\frac{3}{5}x=\frac{10}{5}
5 થી ભાગાકાર કરવાથી 5 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+\frac{3}{5}x=2
10 નો 5 થી ભાગાકાર કરો.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=2+\left(\frac{3}{10}\right)^{2}
\frac{3}{5}, x પદના ગુણાંકને, \frac{3}{10} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{3}{10} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+\frac{3}{5}x+\frac{9}{100}=2+\frac{9}{100}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{3}{10} નો વર્ગ કાઢો.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{209}{100}
\frac{9}{100} માં 2 ઍડ કરો.
\left(x+\frac{3}{10}\right)^{2}=\frac{209}{100}
અવયવ x^{2}+\frac{3}{5}x+\frac{9}{100}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{209}{100}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{3}{10}=\frac{\sqrt{209}}{10} x+\frac{3}{10}=-\frac{\sqrt{209}}{10}
સરળ બનાવો.
x=\frac{\sqrt{209}-3}{10} x=\frac{-\sqrt{209}-3}{10}
સમીકરણની બન્ને બાજુથી \frac{3}{10} નો ઘટાડો કરો.