મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=-12 ab=4\times 9=36
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની 4x^{2}+ax+bx+9 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 36 આપે છે.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=-6
સમાધાન એ જોડી છે જે સરવાળો -12 આપે છે.
\left(4x^{2}-6x\right)+\left(-6x+9\right)
4x^{2}-12x+9 ને \left(4x^{2}-6x\right)+\left(-6x+9\right) તરીકે ફરીથી લખો.
2x\left(2x-3\right)-3\left(2x-3\right)
પ્રથમ સમૂહમાં 2x અને બીજા સમૂહમાં -3 ના અવયવ પાડો.
\left(2x-3\right)\left(2x-3\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x-3 ના અવયવ પાડો.
\left(2x-3\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
x=\frac{3}{2}
સમીકરણનો ઉકેલ શોધવા માટે, 2x-3=0 ઉકેલો.
4x^{2}-12x+9=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 4 ને, b માટે -12 ને, અને c માટે 9 ને બદલીને મૂકો.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
વર્ગ -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
4 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
9 ને -16 વાર ગુણાકાર કરો.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
-144 માં 144 ઍડ કરો.
x=-\frac{-12}{2\times 4}
0 નો વર્ગ મૂળ લો.
x=\frac{12}{2\times 4}
-12 નો વિરોધી 12 છે.
x=\frac{12}{8}
4 ને 2 વાર ગુણાકાર કરો.
x=\frac{3}{2}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{12}{8} ને ઘટાડો.
4x^{2}-12x+9=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
4x^{2}-12x+9-9=-9
સમીકરણની બન્ને બાજુથી 9 નો ઘટાડો કરો.
4x^{2}-12x=-9
સ્વયંમાંથી 9 ઘટાડવા પર 0 બચે.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
4 થી ભાગાકાર કરવાથી 4 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-3x=-\frac{9}{4}
-12 નો 4 થી ભાગાકાર કરો.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
-3, x પદના ગુણાંકને, -\frac{3}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{3}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{3}{2} નો વર્ગ કાઢો.
x^{2}-3x+\frac{9}{4}=0
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{9}{4} માં -\frac{9}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x-\frac{3}{2}\right)^{2}=0
અવયવ x^{2}-3x+\frac{9}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
સરળ બનાવો.
x=\frac{3}{2} x=\frac{3}{2}
સમીકરણની બન્ને બાજુ \frac{3}{2} ઍડ કરો.
x=\frac{3}{2}
સમીકરણ હવે ઉકેલાઈ ગયું છે. ઉકેલો સમાન જ છે.