x માટે ઉકેલો
x=-2
x=7
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x^{2}+7x-17-3x^{2}=12x-3
બન્ને બાજુથી 3x^{2} ઘટાડો.
x^{2}+7x-17=12x-3
x^{2} ને મેળવવા માટે 4x^{2} અને -3x^{2} ને એકસાથે કરો.
x^{2}+7x-17-12x=-3
બન્ને બાજુથી 12x ઘટાડો.
x^{2}-5x-17=-3
-5x ને મેળવવા માટે 7x અને -12x ને એકસાથે કરો.
x^{2}-5x-17+3=0
બંને સાઇડ્સ માટે 3 ઍડ કરો.
x^{2}-5x-14=0
-14મેળવવા માટે -17 અને 3 ને ઍડ કરો.
a+b=-5 ab=-14
સમીકરણને ઉકેલવા માટે, x^{2}-5x-14 નો અવયવ પાડવા માટે સૂત્ર x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) નો ઉપયોગ કરો. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-14 2,-7
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -14 આપે છે.
1-14=-13 2-7=-5
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-7 b=2
સમાધાન એ જોડી છે જે સરવાળો -5 આપે છે.
\left(x-7\right)\left(x+2\right)
મેળવેલ મૂલ્યો નો ઉપયોગ કરીને અવયવ પાડેલ પદાવલિ \left(x+a\right)\left(x+b\right) ને ફરીથી લખો.
x=7 x=-2
સમીકરણનો ઉકેલ શોધવા માટે, x-7=0 અને x+2=0 ઉકેલો.
4x^{2}+7x-17-3x^{2}=12x-3
બન્ને બાજુથી 3x^{2} ઘટાડો.
x^{2}+7x-17=12x-3
x^{2} ને મેળવવા માટે 4x^{2} અને -3x^{2} ને એકસાથે કરો.
x^{2}+7x-17-12x=-3
બન્ને બાજુથી 12x ઘટાડો.
x^{2}-5x-17=-3
-5x ને મેળવવા માટે 7x અને -12x ને એકસાથે કરો.
x^{2}-5x-17+3=0
બંને સાઇડ્સ માટે 3 ઍડ કરો.
x^{2}-5x-14=0
-14મેળવવા માટે -17 અને 3 ને ઍડ કરો.
a+b=-5 ab=1\left(-14\right)=-14
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની x^{2}+ax+bx-14 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-14 2,-7
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -14 આપે છે.
1-14=-13 2-7=-5
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-7 b=2
સમાધાન એ જોડી છે જે સરવાળો -5 આપે છે.
\left(x^{2}-7x\right)+\left(2x-14\right)
x^{2}-5x-14 ને \left(x^{2}-7x\right)+\left(2x-14\right) તરીકે ફરીથી લખો.
x\left(x-7\right)+2\left(x-7\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 2 ના અવયવ પાડો.
\left(x-7\right)\left(x+2\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-7 ના અવયવ પાડો.
x=7 x=-2
સમીકરણનો ઉકેલ શોધવા માટે, x-7=0 અને x+2=0 ઉકેલો.
4x^{2}+7x-17-3x^{2}=12x-3
બન્ને બાજુથી 3x^{2} ઘટાડો.
x^{2}+7x-17=12x-3
x^{2} ને મેળવવા માટે 4x^{2} અને -3x^{2} ને એકસાથે કરો.
x^{2}+7x-17-12x=-3
બન્ને બાજુથી 12x ઘટાડો.
x^{2}-5x-17=-3
-5x ને મેળવવા માટે 7x અને -12x ને એકસાથે કરો.
x^{2}-5x-17+3=0
બંને સાઇડ્સ માટે 3 ઍડ કરો.
x^{2}-5x-14=0
-14મેળવવા માટે -17 અને 3 ને ઍડ કરો.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે -5 ને, અને c માટે -14 ને બદલીને મૂકો.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
વર્ગ -5.
x=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
-14 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-5\right)±\sqrt{81}}{2}
56 માં 25 ઍડ કરો.
x=\frac{-\left(-5\right)±9}{2}
81 નો વર્ગ મૂળ લો.
x=\frac{5±9}{2}
-5 નો વિરોધી 5 છે.
x=\frac{14}{2}
હવે x=\frac{5±9}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 9 માં 5 ઍડ કરો.
x=7
14 નો 2 થી ભાગાકાર કરો.
x=-\frac{4}{2}
હવે x=\frac{5±9}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 5 માંથી 9 ને ઘટાડો.
x=-2
-4 નો 2 થી ભાગાકાર કરો.
x=7 x=-2
સમીકરણ હવે ઉકેલાઈ ગયું છે.
4x^{2}+7x-17-3x^{2}=12x-3
બન્ને બાજુથી 3x^{2} ઘટાડો.
x^{2}+7x-17=12x-3
x^{2} ને મેળવવા માટે 4x^{2} અને -3x^{2} ને એકસાથે કરો.
x^{2}+7x-17-12x=-3
બન્ને બાજુથી 12x ઘટાડો.
x^{2}-5x-17=-3
-5x ને મેળવવા માટે 7x અને -12x ને એકસાથે કરો.
x^{2}-5x=-3+17
બંને સાઇડ્સ માટે 17 ઍડ કરો.
x^{2}-5x=14
14મેળવવા માટે -3 અને 17 ને ઍડ કરો.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=14+\left(-\frac{5}{2}\right)^{2}
-5, x પદના ગુણાંકને, -\frac{5}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{5}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-5x+\frac{25}{4}=14+\frac{25}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{5}{2} નો વર્ગ કાઢો.
x^{2}-5x+\frac{25}{4}=\frac{81}{4}
\frac{25}{4} માં 14 ઍડ કરો.
\left(x-\frac{5}{2}\right)^{2}=\frac{81}{4}
x^{2}-5x+\frac{25}{4} અવયવ. સામાન્યમાં, જ્યારે x^{2}+bx+c સંપૂર્ણ વર્ગ હોય ત્યારે, એને હંમેશા \left(x+\frac{b}{2}\right)^{2} તરીકે અવયવ કરી શકાય.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{5}{2}=\frac{9}{2} x-\frac{5}{2}=-\frac{9}{2}
સરળ બનાવો.
x=7 x=-2
સમીકરણની બન્ને બાજુ \frac{5}{2} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}