મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=4 ab=4\times 1=4
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની 4x^{2}+ax+bx+1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,4 2,2
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 4 આપે છે.
1+4=5 2+2=4
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=2 b=2
સમાધાન એ જોડી છે જે સરવાળો 4 આપે છે.
\left(4x^{2}+2x\right)+\left(2x+1\right)
4x^{2}+4x+1 ને \left(4x^{2}+2x\right)+\left(2x+1\right) તરીકે ફરીથી લખો.
2x\left(2x+1\right)+2x+1
4x^{2}+2x માં 2x ના અવયવ પાડો.
\left(2x+1\right)\left(2x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x+1 ના અવયવ પાડો.
\left(2x+1\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
x=-\frac{1}{2}
સમીકરણનો ઉકેલ શોધવા માટે, 2x+1=0 ઉકેલો.
4x^{2}+4x+1=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 4 ને, b માટે 4 ને, અને c માટે 1 ને બદલીને મૂકો.
x=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
વર્ગ 4.
x=\frac{-4±\sqrt{16-16}}{2\times 4}
4 ને -4 વાર ગુણાકાર કરો.
x=\frac{-4±\sqrt{0}}{2\times 4}
-16 માં 16 ઍડ કરો.
x=-\frac{4}{2\times 4}
0 નો વર્ગ મૂળ લો.
x=-\frac{4}{8}
4 ને 2 વાર ગુણાકાર કરો.
x=-\frac{1}{2}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-4}{8} ને ઘટાડો.
4x^{2}+4x+1=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
4x^{2}+4x+1-1=-1
સમીકરણની બન્ને બાજુથી 1 નો ઘટાડો કરો.
4x^{2}+4x=-1
સ્વયંમાંથી 1 ઘટાડવા પર 0 બચે.
\frac{4x^{2}+4x}{4}=-\frac{1}{4}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x^{2}+\frac{4}{4}x=-\frac{1}{4}
4 થી ભાગાકાર કરવાથી 4 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+x=-\frac{1}{4}
4 નો 4 થી ભાગાકાર કરો.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
1, x પદના ગુણાંકને, \frac{1}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{1}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+x+\frac{1}{4}=\frac{-1+1}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{1}{2} નો વર્ગ કાઢો.
x^{2}+x+\frac{1}{4}=0
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{4} માં -\frac{1}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x+\frac{1}{2}\right)^{2}=0
અવયવ x^{2}+x+\frac{1}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{0}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{1}{2}=0 x+\frac{1}{2}=0
સરળ બનાવો.
x=-\frac{1}{2} x=-\frac{1}{2}
સમીકરણની બન્ને બાજુથી \frac{1}{2} નો ઘટાડો કરો.
x=-\frac{1}{2}
સમીકરણ હવે ઉકેલાઈ ગયું છે. ઉકેલો સમાન જ છે.