અવયવ
\left(2x+5\right)\left(2x+7\right)
મૂલ્યાંકન કરો
\left(2x+5\right)\left(2x+7\right)
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=24 ab=4\times 35=140
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 4x^{2}+ax+bx+35 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,140 2,70 4,35 5,28 7,20 10,14
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 140 આપે છે.
1+140=141 2+70=72 4+35=39 5+28=33 7+20=27 10+14=24
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=10 b=14
સમાધાન એ જોડી છે જે સરવાળો 24 આપે છે.
\left(4x^{2}+10x\right)+\left(14x+35\right)
4x^{2}+24x+35 ને \left(4x^{2}+10x\right)+\left(14x+35\right) તરીકે ફરીથી લખો.
2x\left(2x+5\right)+7\left(2x+5\right)
પ્રથમ સમૂહમાં 2x અને બીજા સમૂહમાં 7 ના અવયવ પાડો.
\left(2x+5\right)\left(2x+7\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x+5 ના અવયવ પાડો.
4x^{2}+24x+35=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-24±\sqrt{24^{2}-4\times 4\times 35}}{2\times 4}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-24±\sqrt{576-4\times 4\times 35}}{2\times 4}
વર્ગ 24.
x=\frac{-24±\sqrt{576-16\times 35}}{2\times 4}
4 ને -4 વાર ગુણાકાર કરો.
x=\frac{-24±\sqrt{576-560}}{2\times 4}
35 ને -16 વાર ગુણાકાર કરો.
x=\frac{-24±\sqrt{16}}{2\times 4}
-560 માં 576 ઍડ કરો.
x=\frac{-24±4}{2\times 4}
16 નો વર્ગ મૂળ લો.
x=\frac{-24±4}{8}
4 ને 2 વાર ગુણાકાર કરો.
x=-\frac{20}{8}
હવે x=\frac{-24±4}{8} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 4 માં -24 ઍડ કરો.
x=-\frac{5}{2}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-20}{8} ને ઘટાડો.
x=-\frac{28}{8}
હવે x=\frac{-24±4}{8} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -24 માંથી 4 ને ઘટાડો.
x=-\frac{7}{2}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-28}{8} ને ઘટાડો.
4x^{2}+24x+35=4\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-\frac{7}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -\frac{5}{2} અને x_{2} ને બદલે -\frac{7}{2} મૂકો.
4x^{2}+24x+35=4\left(x+\frac{5}{2}\right)\left(x+\frac{7}{2}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
4x^{2}+24x+35=4\times \frac{2x+5}{2}\left(x+\frac{7}{2}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{5}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
4x^{2}+24x+35=4\times \frac{2x+5}{2}\times \frac{2x+7}{2}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{7}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
4x^{2}+24x+35=4\times \frac{\left(2x+5\right)\left(2x+7\right)}{2\times 2}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{2x+5}{2} નો \frac{2x+7}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
4x^{2}+24x+35=4\times \frac{\left(2x+5\right)\left(2x+7\right)}{4}
2 ને 2 વાર ગુણાકાર કરો.
4x^{2}+24x+35=\left(2x+5\right)\left(2x+7\right)
4 અને 4 માં ગુરુત્તમ સામાન્ય અવયવ 4 ની બહાર રદ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}