અવયવ
4\left(a-\frac{1-\sqrt{2}}{2}\right)\left(a-\frac{\sqrt{2}+1}{2}\right)
મૂલ્યાંકન કરો
4a^{2}-4a-1
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4a^{2}-4a-1=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
a=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-1\right)}}{2\times 4}
વર્ગ -4.
a=\frac{-\left(-4\right)±\sqrt{16-16\left(-1\right)}}{2\times 4}
4 ને -4 વાર ગુણાકાર કરો.
a=\frac{-\left(-4\right)±\sqrt{16+16}}{2\times 4}
-1 ને -16 વાર ગુણાકાર કરો.
a=\frac{-\left(-4\right)±\sqrt{32}}{2\times 4}
16 માં 16 ઍડ કરો.
a=\frac{-\left(-4\right)±4\sqrt{2}}{2\times 4}
32 નો વર્ગ મૂળ લો.
a=\frac{4±4\sqrt{2}}{2\times 4}
-4 નો વિરોધી 4 છે.
a=\frac{4±4\sqrt{2}}{8}
4 ને 2 વાર ગુણાકાર કરો.
a=\frac{4\sqrt{2}+4}{8}
હવે a=\frac{4±4\sqrt{2}}{8} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 4\sqrt{2} માં 4 ઍડ કરો.
a=\frac{\sqrt{2}+1}{2}
4+4\sqrt{2} નો 8 થી ભાગાકાર કરો.
a=\frac{4-4\sqrt{2}}{8}
હવે a=\frac{4±4\sqrt{2}}{8} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 4 માંથી 4\sqrt{2} ને ઘટાડો.
a=\frac{1-\sqrt{2}}{2}
4-4\sqrt{2} નો 8 થી ભાગાકાર કરો.
4a^{2}-4a-1=4\left(a-\frac{\sqrt{2}+1}{2}\right)\left(a-\frac{1-\sqrt{2}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{1+\sqrt{2}}{2} અને x_{2} ને બદલે \frac{1-\sqrt{2}}{2} મૂકો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}