x માટે ઉકેલો
x=-\frac{2}{3}\approx -0.666666667
x=2
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4+4x-3x^{2}=0
બન્ને બાજુથી 3x^{2} ઘટાડો.
-3x^{2}+4x+4=0
તેને માનક ફૉર્મમાં મૂકવા માટે બહુપદી ફરી ગોઠવો. પદોને સૌથી વધુથી સૌથી ઓછા ઘાત ક્રમમાં ગોઠવો.
a+b=4 ab=-3\times 4=-12
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની -3x^{2}+ax+bx+4 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,12 -2,6 -3,4
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -12 આપે છે.
-1+12=11 -2+6=4 -3+4=1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=6 b=-2
સમાધાન એ જોડી છે જે સરવાળો 4 આપે છે.
\left(-3x^{2}+6x\right)+\left(-2x+4\right)
-3x^{2}+4x+4 ને \left(-3x^{2}+6x\right)+\left(-2x+4\right) તરીકે ફરીથી લખો.
3x\left(-x+2\right)+2\left(-x+2\right)
પ્રથમ સમૂહમાં 3x અને બીજા સમૂહમાં 2 ના અવયવ પાડો.
\left(-x+2\right)\left(3x+2\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ -x+2 ના અવયવ પાડો.
x=2 x=-\frac{2}{3}
સમીકરણનો ઉકેલ શોધવા માટે, -x+2=0 અને 3x+2=0 ઉકેલો.
4+4x-3x^{2}=0
બન્ને બાજુથી 3x^{2} ઘટાડો.
-3x^{2}+4x+4=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 4}}{2\left(-3\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -3 ને, b માટે 4 ને, અને c માટે 4 ને બદલીને મૂકો.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 4}}{2\left(-3\right)}
વર્ગ 4.
x=\frac{-4±\sqrt{16+12\times 4}}{2\left(-3\right)}
-3 ને -4 વાર ગુણાકાર કરો.
x=\frac{-4±\sqrt{16+48}}{2\left(-3\right)}
4 ને 12 વાર ગુણાકાર કરો.
x=\frac{-4±\sqrt{64}}{2\left(-3\right)}
48 માં 16 ઍડ કરો.
x=\frac{-4±8}{2\left(-3\right)}
64 નો વર્ગ મૂળ લો.
x=\frac{-4±8}{-6}
-3 ને 2 વાર ગુણાકાર કરો.
x=\frac{4}{-6}
હવે x=\frac{-4±8}{-6} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 8 માં -4 ઍડ કરો.
x=-\frac{2}{3}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{4}{-6} ને ઘટાડો.
x=-\frac{12}{-6}
હવે x=\frac{-4±8}{-6} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -4 માંથી 8 ને ઘટાડો.
x=2
-12 નો -6 થી ભાગાકાર કરો.
x=-\frac{2}{3} x=2
સમીકરણ હવે ઉકેલાઈ ગયું છે.
4+4x-3x^{2}=0
બન્ને બાજુથી 3x^{2} ઘટાડો.
4x-3x^{2}=-4
બન્ને બાજુથી 4 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
-3x^{2}+4x=-4
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{-3x^{2}+4x}{-3}=-\frac{4}{-3}
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
x^{2}+\frac{4}{-3}x=-\frac{4}{-3}
-3 થી ભાગાકાર કરવાથી -3 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-\frac{4}{3}x=-\frac{4}{-3}
4 નો -3 થી ભાગાકાર કરો.
x^{2}-\frac{4}{3}x=\frac{4}{3}
-4 નો -3 થી ભાગાકાર કરો.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3}, x પદના ગુણાંકને, -\frac{2}{3} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{2}{3} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{2}{3} નો વર્ગ કાઢો.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{16}{9}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{4}{9} માં \frac{4}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x-\frac{2}{3}\right)^{2}=\frac{16}{9}
અવયવ x^{2}-\frac{4}{3}x+\frac{4}{9}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{2}{3}=\frac{4}{3} x-\frac{2}{3}=-\frac{4}{3}
સરળ બનાવો.
x=2 x=-\frac{2}{3}
સમીકરણની બન્ને બાજુ \frac{2}{3} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}