મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x^{2}-15x+36
તેને માનક ફૉર્મમાં મૂકવા માટે બહુપદી ફરી ગોઠવો. પદોને સૌથી વધુથી સૌથી ઓછા ઘાત ક્રમમાં ગોઠવો.
a+b=-15 ab=1\times 36=36
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx+36 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 36 આપે છે.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-12 b=-3
સમાધાન એ જોડી છે જે સરવાળો -15 આપે છે.
\left(x^{2}-12x\right)+\left(-3x+36\right)
x^{2}-15x+36 ને \left(x^{2}-12x\right)+\left(-3x+36\right) તરીકે ફરીથી લખો.
x\left(x-12\right)-3\left(x-12\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં -3 ના અવયવ પાડો.
\left(x-12\right)\left(x-3\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-12 ના અવયવ પાડો.
x^{2}-15x+36=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 36}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 36}}{2}
વર્ગ -15.
x=\frac{-\left(-15\right)±\sqrt{225-144}}{2}
36 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-15\right)±\sqrt{81}}{2}
-144 માં 225 ઍડ કરો.
x=\frac{-\left(-15\right)±9}{2}
81 નો વર્ગ મૂળ લો.
x=\frac{15±9}{2}
-15 નો વિરોધી 15 છે.
x=\frac{24}{2}
હવે x=\frac{15±9}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 9 માં 15 ઍડ કરો.
x=12
24 નો 2 થી ભાગાકાર કરો.
x=\frac{6}{2}
હવે x=\frac{15±9}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 15 માંથી 9 ને ઘટાડો.
x=3
6 નો 2 થી ભાગાકાર કરો.
x^{2}-15x+36=\left(x-12\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 12 અને x_{2} ને બદલે 3 મૂકો.