મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\frac{3}{10}\left(x+1\right)<\frac{51}{100}+x
10 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{30}{100} ને ઘટાડો.
\frac{3}{10}x+\frac{3}{10}<\frac{51}{100}+x
\frac{3}{10} સાથે x+1 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\frac{3}{10}x+\frac{3}{10}-x<\frac{51}{100}
બન્ને બાજુથી x ઘટાડો.
-\frac{7}{10}x+\frac{3}{10}<\frac{51}{100}
-\frac{7}{10}x ને મેળવવા માટે \frac{3}{10}x અને -x ને એકસાથે કરો.
-\frac{7}{10}x<\frac{51}{100}-\frac{3}{10}
બન્ને બાજુથી \frac{3}{10} ઘટાડો.
-\frac{7}{10}x<\frac{51}{100}-\frac{30}{100}
100 અને 10 નો લઘુત્તમ સામાન્ય ગુણાંક 100 છે. \frac{51}{100} અને \frac{3}{10} ને અંશ 100 સાથે અપૂર્ણાંકમાં રૂપાંતરિત કરો.
-\frac{7}{10}x<\frac{51-30}{100}
કારણ કે \frac{51}{100} અને \frac{30}{100} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
-\frac{7}{10}x<\frac{21}{100}
21 મેળવવા માટે 51 માંથી 30 ને ઘટાડો.
x>\frac{21}{100}\left(-\frac{10}{7}\right)
-\frac{10}{7} દ્વારા બન્ને બાજુનો ગુણાકાર કરો, જે -\frac{7}{10} નો વ્યુત્ક્રમ છે. -\frac{7}{10} એ ઋણાત્મક હોવાથી, અસમાનતાની દિશા પરિવર્તિત થાય છે.
x>\frac{21\left(-10\right)}{100\times 7}
ગુણક વારનો ગુણક અને ભાજક વારનો ભાજકથી ગુણાકાર કરીને -\frac{10}{7} નો \frac{21}{100} વાર ગુણાકાર કરો.
x>\frac{-210}{700}
અપૂર્ણાંક \frac{21\left(-10\right)}{100\times 7} માં ગુણાકાર કરો.
x>-\frac{3}{10}
70 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-210}{700} ને ઘટાડો.