મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x^{2}+6x-\left(x+1\right)\left(x-2\right)=2
3x સાથે x+2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3x^{2}+6x-\left(x^{2}-x-2\right)=2
x+1 નો x-2 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3x^{2}+6x-x^{2}+x+2=2
x^{2}-x-2 નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
2x^{2}+6x+x+2=2
2x^{2} ને મેળવવા માટે 3x^{2} અને -x^{2} ને એકસાથે કરો.
2x^{2}+7x+2=2
7x ને મેળવવા માટે 6x અને x ને એકસાથે કરો.
2x^{2}+7x+2-2=0
બન્ને બાજુથી 2 ઘટાડો.
2x^{2}+7x=0
0 મેળવવા માટે 2 માંથી 2 ને ઘટાડો.
x=\frac{-7±\sqrt{7^{2}}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે 7 ને, અને c માટે 0 ને બદલીને મૂકો.
x=\frac{-7±7}{2\times 2}
7^{2} નો વર્ગ મૂળ લો.
x=\frac{-7±7}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{0}{4}
હવે x=\frac{-7±7}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 7 માં -7 ઍડ કરો.
x=0
0 નો 4 થી ભાગાકાર કરો.
x=-\frac{14}{4}
હવે x=\frac{-7±7}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -7 માંથી 7 ને ઘટાડો.
x=-\frac{7}{2}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-14}{4} ને ઘટાડો.
x=0 x=-\frac{7}{2}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
3x^{2}+6x-\left(x+1\right)\left(x-2\right)=2
3x સાથે x+2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3x^{2}+6x-\left(x^{2}-x-2\right)=2
x+1 નો x-2 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3x^{2}+6x-x^{2}+x+2=2
x^{2}-x-2 નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
2x^{2}+6x+x+2=2
2x^{2} ને મેળવવા માટે 3x^{2} અને -x^{2} ને એકસાથે કરો.
2x^{2}+7x+2=2
7x ને મેળવવા માટે 6x અને x ને એકસાથે કરો.
2x^{2}+7x=2-2
બન્ને બાજુથી 2 ઘટાડો.
2x^{2}+7x=0
0 મેળવવા માટે 2 માંથી 2 ને ઘટાડો.
\frac{2x^{2}+7x}{2}=\frac{0}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}+\frac{7}{2}x=\frac{0}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+\frac{7}{2}x=0
0 નો 2 થી ભાગાકાર કરો.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\left(\frac{7}{4}\right)^{2}
\frac{7}{2}, x પદના ગુણાંકને, \frac{7}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{7}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{49}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{7}{4} નો વર્ગ કાઢો.
\left(x+\frac{7}{4}\right)^{2}=\frac{49}{16}
અવયવ x^{2}+\frac{7}{2}x+\frac{49}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{7}{4}=\frac{7}{4} x+\frac{7}{4}=-\frac{7}{4}
સરળ બનાવો.
x=0 x=-\frac{7}{2}
સમીકરણની બન્ને બાજુથી \frac{7}{4} નો ઘટાડો કરો.