મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=7 ab=3\left(-6\right)=-18
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 3x^{2}+ax+bx-6 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,18 -2,9 -3,6
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -18 આપે છે.
-1+18=17 -2+9=7 -3+6=3
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-2 b=9
સમાધાન એ જોડી છે જે સરવાળો 7 આપે છે.
\left(3x^{2}-2x\right)+\left(9x-6\right)
3x^{2}+7x-6 ને \left(3x^{2}-2x\right)+\left(9x-6\right) તરીકે ફરીથી લખો.
x\left(3x-2\right)+3\left(3x-2\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 3 ના અવયવ પાડો.
\left(3x-2\right)\left(x+3\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 3x-2 ના અવયવ પાડો.
3x^{2}+7x-6=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-6\right)}}{2\times 3}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-7±\sqrt{49-4\times 3\left(-6\right)}}{2\times 3}
વર્ગ 7.
x=\frac{-7±\sqrt{49-12\left(-6\right)}}{2\times 3}
3 ને -4 વાર ગુણાકાર કરો.
x=\frac{-7±\sqrt{49+72}}{2\times 3}
-6 ને -12 વાર ગુણાકાર કરો.
x=\frac{-7±\sqrt{121}}{2\times 3}
72 માં 49 ઍડ કરો.
x=\frac{-7±11}{2\times 3}
121 નો વર્ગ મૂળ લો.
x=\frac{-7±11}{6}
3 ને 2 વાર ગુણાકાર કરો.
x=\frac{4}{6}
હવે x=\frac{-7±11}{6} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 11 માં -7 ઍડ કરો.
x=\frac{2}{3}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{4}{6} ને ઘટાડો.
x=-\frac{18}{6}
હવે x=\frac{-7±11}{6} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -7 માંથી 11 ને ઘટાડો.
x=-3
-18 નો 6 થી ભાગાકાર કરો.
3x^{2}+7x-6=3\left(x-\frac{2}{3}\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{2}{3} અને x_{2} ને બદલે -3 મૂકો.
3x^{2}+7x-6=3\left(x-\frac{2}{3}\right)\left(x+3\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
3x^{2}+7x-6=3\times \frac{3x-2}{3}\left(x+3\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને x માંથી \frac{2}{3} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
3x^{2}+7x-6=\left(3x-2\right)\left(x+3\right)
3 અને 3 માં ગુરુત્તમ સામાન્ય અવયવ 3 ની બહાર રદ કરો.