મુખ્ય સમાવિષ્ટ પર જાવ
n માટે ઉકેલો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3n^{2}+5n-9=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
n=\frac{-5±\sqrt{5^{2}-4\times 3\left(-9\right)}}{2\times 3}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 3 ને, b માટે 5 ને, અને c માટે -9 ને બદલીને મૂકો.
n=\frac{-5±\sqrt{25-4\times 3\left(-9\right)}}{2\times 3}
વર્ગ 5.
n=\frac{-5±\sqrt{25-12\left(-9\right)}}{2\times 3}
3 ને -4 વાર ગુણાકાર કરો.
n=\frac{-5±\sqrt{25+108}}{2\times 3}
-9 ને -12 વાર ગુણાકાર કરો.
n=\frac{-5±\sqrt{133}}{2\times 3}
108 માં 25 ઍડ કરો.
n=\frac{-5±\sqrt{133}}{6}
3 ને 2 વાર ગુણાકાર કરો.
n=\frac{\sqrt{133}-5}{6}
હવે n=\frac{-5±\sqrt{133}}{6} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \sqrt{133} માં -5 ઍડ કરો.
n=\frac{-\sqrt{133}-5}{6}
હવે n=\frac{-5±\sqrt{133}}{6} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -5 માંથી \sqrt{133} ને ઘટાડો.
n=\frac{\sqrt{133}-5}{6} n=\frac{-\sqrt{133}-5}{6}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
3n^{2}+5n-9=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
3n^{2}+5n-9-\left(-9\right)=-\left(-9\right)
સમીકરણની બન્ને બાજુ 9 ઍડ કરો.
3n^{2}+5n=-\left(-9\right)
સ્વયંમાંથી -9 ઘટાડવા પર 0 બચે.
3n^{2}+5n=9
0 માંથી -9 ને ઘટાડો.
\frac{3n^{2}+5n}{3}=\frac{9}{3}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
n^{2}+\frac{5}{3}n=\frac{9}{3}
3 થી ભાગાકાર કરવાથી 3 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
n^{2}+\frac{5}{3}n=3
9 નો 3 થી ભાગાકાર કરો.
n^{2}+\frac{5}{3}n+\left(\frac{5}{6}\right)^{2}=3+\left(\frac{5}{6}\right)^{2}
\frac{5}{3}, x પદના ગુણાંકને, \frac{5}{6} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{5}{6} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
n^{2}+\frac{5}{3}n+\frac{25}{36}=3+\frac{25}{36}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{5}{6} નો વર્ગ કાઢો.
n^{2}+\frac{5}{3}n+\frac{25}{36}=\frac{133}{36}
\frac{25}{36} માં 3 ઍડ કરો.
\left(n+\frac{5}{6}\right)^{2}=\frac{133}{36}
અવયવ n^{2}+\frac{5}{3}n+\frac{25}{36}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(n+\frac{5}{6}\right)^{2}}=\sqrt{\frac{133}{36}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
n+\frac{5}{6}=\frac{\sqrt{133}}{6} n+\frac{5}{6}=-\frac{\sqrt{133}}{6}
સરળ બનાવો.
n=\frac{\sqrt{133}-5}{6} n=\frac{-\sqrt{133}-5}{6}
સમીકરણની બન્ને બાજુથી \frac{5}{6} નો ઘટાડો કરો.