અવયવ
3\left(x+1\right)^{2}
મૂલ્યાંકન કરો
3\left(x+1\right)^{2}
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
3\left(x^{2}+2x+1\right)
3 નો અવયવ પાડો.
\left(x+1\right)^{2}
x^{2}+2x+1 ગણતરી કરો. પૂર્ણ ચોરસના સુત્ર, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, જ્યાં a=x અને b=1 નો ઉપયોગ કરો.
3\left(x+1\right)^{2}
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
factor(3x^{2}+6x+3)
આ ત્રિપદી પાસે ત્રિપદી વર્ગનો પ્રપત્ર છે, કદાચ એ માટે સામાન્ય અવયવ સાથે ગુણાકાર કરો. ત્રિપદી વર્ગોનું અગ્રણી અને રિક્ત પદોના વર્ગ મૂળ શોધવાથી અવયવ કરી શકાય છે.
gcf(3,6,3)=3
ગુણાંકોના ગુરુત્તમ સામાન્ય અવયવને શોધો.
3\left(x^{2}+2x+1\right)
3 નો અવયવ પાડો.
3\left(x+1\right)^{2}
ત્રિપદી વર્ગ એ દ્વિપદીનો વર્ગ છે જે અગ્રણી અને ત્રિપદી વર્ગના મધ્ય પદના ચિહ્ન દ્વારા નક્કી કરેલ ચિહ્ન સાથે, રિક્ત પદોના વર્ગ મૂળોનું કુલ અથવા તફાવત છે.
3x^{2}+6x+3=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 3}}{2\times 3}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-6±\sqrt{36-4\times 3\times 3}}{2\times 3}
વર્ગ 6.
x=\frac{-6±\sqrt{36-12\times 3}}{2\times 3}
3 ને -4 વાર ગુણાકાર કરો.
x=\frac{-6±\sqrt{36-36}}{2\times 3}
3 ને -12 વાર ગુણાકાર કરો.
x=\frac{-6±\sqrt{0}}{2\times 3}
-36 માં 36 ઍડ કરો.
x=\frac{-6±0}{2\times 3}
0 નો વર્ગ મૂળ લો.
x=\frac{-6±0}{6}
3 ને 2 વાર ગુણાકાર કરો.
3x^{2}+6x+3=3\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -1 અને x_{2} ને બદલે -1 મૂકો.
3x^{2}+6x+3=3\left(x+1\right)\left(x+1\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}