અવયવ
2\left(2x+3\right)\left(5x+2\right)
મૂલ્યાંકન કરો
20x^{2}+38x+12
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2\left(10x^{2}+19x+6\right)
2 નો અવયવ પાડો.
a+b=19 ab=10\times 6=60
10x^{2}+19x+6 ગણતરી કરો. સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 10x^{2}+ax+bx+6 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,60 2,30 3,20 4,15 5,12 6,10
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 60 આપે છે.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=4 b=15
સમાધાન એ જોડી છે જે સરવાળો 19 આપે છે.
\left(10x^{2}+4x\right)+\left(15x+6\right)
10x^{2}+19x+6 ને \left(10x^{2}+4x\right)+\left(15x+6\right) તરીકે ફરીથી લખો.
2x\left(5x+2\right)+3\left(5x+2\right)
પ્રથમ સમૂહમાં 2x અને બીજા સમૂહમાં 3 ના અવયવ પાડો.
\left(5x+2\right)\left(2x+3\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 5x+2 ના અવયવ પાડો.
2\left(5x+2\right)\left(2x+3\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
20x^{2}+38x+12=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-38±\sqrt{38^{2}-4\times 20\times 12}}{2\times 20}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-38±\sqrt{1444-4\times 20\times 12}}{2\times 20}
વર્ગ 38.
x=\frac{-38±\sqrt{1444-80\times 12}}{2\times 20}
20 ને -4 વાર ગુણાકાર કરો.
x=\frac{-38±\sqrt{1444-960}}{2\times 20}
12 ને -80 વાર ગુણાકાર કરો.
x=\frac{-38±\sqrt{484}}{2\times 20}
-960 માં 1444 ઍડ કરો.
x=\frac{-38±22}{2\times 20}
484 નો વર્ગ મૂળ લો.
x=\frac{-38±22}{40}
20 ને 2 વાર ગુણાકાર કરો.
x=-\frac{16}{40}
હવે x=\frac{-38±22}{40} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 22 માં -38 ઍડ કરો.
x=-\frac{2}{5}
8 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-16}{40} ને ઘટાડો.
x=-\frac{60}{40}
હવે x=\frac{-38±22}{40} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -38 માંથી 22 ને ઘટાડો.
x=-\frac{3}{2}
20 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-60}{40} ને ઘટાડો.
20x^{2}+38x+12=20\left(x-\left(-\frac{2}{5}\right)\right)\left(x-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -\frac{2}{5} અને x_{2} ને બદલે -\frac{3}{2} મૂકો.
20x^{2}+38x+12=20\left(x+\frac{2}{5}\right)\left(x+\frac{3}{2}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
20x^{2}+38x+12=20\times \frac{5x+2}{5}\left(x+\frac{3}{2}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{2}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
20x^{2}+38x+12=20\times \frac{5x+2}{5}\times \frac{2x+3}{2}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{3}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
20x^{2}+38x+12=20\times \frac{\left(5x+2\right)\left(2x+3\right)}{5\times 2}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{5x+2}{5} નો \frac{2x+3}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
20x^{2}+38x+12=20\times \frac{\left(5x+2\right)\left(2x+3\right)}{10}
2 ને 5 વાર ગુણાકાર કરો.
20x^{2}+38x+12=2\left(5x+2\right)\left(2x+3\right)
20 અને 10 માં ગુરુત્તમ સામાન્ય અવયવ 10 ની બહાર રદ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}