મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2\left(x^{2}-4x-12\right)
2 નો અવયવ પાડો.
a+b=-4 ab=1\left(-12\right)=-12
x^{2}-4x-12 ગણતરી કરો. સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx-12 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-12 2,-6 3,-4
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -12 આપે છે.
1-12=-11 2-6=-4 3-4=-1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=2
સમાધાન એ જોડી છે જે સરવાળો -4 આપે છે.
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 ને \left(x^{2}-6x\right)+\left(2x-12\right) તરીકે ફરીથી લખો.
x\left(x-6\right)+2\left(x-6\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 2 ના અવયવ પાડો.
\left(x-6\right)\left(x+2\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-6 ના અવયવ પાડો.
2\left(x-6\right)\left(x+2\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
2x^{2}-8x-24=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
વર્ગ -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
-24 ને -8 વાર ગુણાકાર કરો.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
192 માં 64 ઍડ કરો.
x=\frac{-\left(-8\right)±16}{2\times 2}
256 નો વર્ગ મૂળ લો.
x=\frac{8±16}{2\times 2}
-8 નો વિરોધી 8 છે.
x=\frac{8±16}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{24}{4}
હવે x=\frac{8±16}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 16 માં 8 ઍડ કરો.
x=6
24 નો 4 થી ભાગાકાર કરો.
x=-\frac{8}{4}
હવે x=\frac{8±16}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 8 માંથી 16 ને ઘટાડો.
x=-2
-8 નો 4 થી ભાગાકાર કરો.
2x^{2}-8x-24=2\left(x-6\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 6 અને x_{2} ને બદલે -2 મૂકો.
2x^{2}-8x-24=2\left(x-6\right)\left(x+2\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.