મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x\left(2x-5\right)=0
x નો અવયવ પાડો.
x=0 x=\frac{5}{2}
સમીકરણનો ઉકેલ શોધવા માટે, x=0 અને 2x-5=0 ઉકેલો.
2x^{2}-5x=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે -5 ને, અને c માટે 0 ને બદલીને મૂકો.
x=\frac{-\left(-5\right)±5}{2\times 2}
\left(-5\right)^{2} નો વર્ગ મૂળ લો.
x=\frac{5±5}{2\times 2}
-5 નો વિરોધી 5 છે.
x=\frac{5±5}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{10}{4}
હવે x=\frac{5±5}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 5 માં 5 ઍડ કરો.
x=\frac{5}{2}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{10}{4} ને ઘટાડો.
x=\frac{0}{4}
હવે x=\frac{5±5}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 5 માંથી 5 ને ઘટાડો.
x=0
0 નો 4 થી ભાગાકાર કરો.
x=\frac{5}{2} x=0
સમીકરણ હવે ઉકેલાઈ ગયું છે.
2x^{2}-5x=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{2x^{2}-5x}{2}=\frac{0}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}-\frac{5}{2}x=\frac{0}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-\frac{5}{2}x=0
0 નો 2 થી ભાગાકાર કરો.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2}, x પદના ગુણાંકને, -\frac{5}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{5}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{25}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{5}{4} નો વર્ગ કાઢો.
\left(x-\frac{5}{4}\right)^{2}=\frac{25}{16}
અવયવ x^{2}-\frac{5}{2}x+\frac{25}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{5}{4}=\frac{5}{4} x-\frac{5}{4}=-\frac{5}{4}
સરળ બનાવો.
x=\frac{5}{2} x=0
સમીકરણની બન્ને બાજુ \frac{5}{4} ઍડ કરો.