અવયવ
2\left(x-3\right)\left(x+1\right)
મૂલ્યાંકન કરો
2\left(x-3\right)\left(x+1\right)
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2\left(x^{2}-2x-3\right)
2 નો અવયવ પાડો.
a+b=-2 ab=1\left(-3\right)=-3
x^{2}-2x-3 ગણતરી કરો. સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx-3 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=-3 b=1
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 ને \left(x^{2}-3x\right)+\left(x-3\right) તરીકે ફરીથી લખો.
x\left(x-3\right)+x-3
x^{2}-3x માં x ના અવયવ પાડો.
\left(x-3\right)\left(x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-3 ના અવયવ પાડો.
2\left(x-3\right)\left(x+1\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
2x^{2}-4x-6=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
વર્ગ -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
-6 ને -8 વાર ગુણાકાર કરો.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
48 માં 16 ઍડ કરો.
x=\frac{-\left(-4\right)±8}{2\times 2}
64 નો વર્ગ મૂળ લો.
x=\frac{4±8}{2\times 2}
-4 નો વિરોધી 4 છે.
x=\frac{4±8}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{12}{4}
હવે x=\frac{4±8}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 8 માં 4 ઍડ કરો.
x=3
12 નો 4 થી ભાગાકાર કરો.
x=-\frac{4}{4}
હવે x=\frac{4±8}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 4 માંથી 8 ને ઘટાડો.
x=-1
-4 નો 4 થી ભાગાકાર કરો.
2x^{2}-4x-6=2\left(x-3\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 3 અને x_{2} ને બદલે -1 મૂકો.
2x^{2}-4x-6=2\left(x-3\right)\left(x+1\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}