x માટે ઉકેલો (જટિલ સમાધાન)
x=\frac{1+\sqrt{31}i}{4}\approx 0.25+1.391941091i
x=\frac{-\sqrt{31}i+1}{4}\approx 0.25-1.391941091i
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x^{2}-x=-4
બન્ને બાજુથી x ઘટાડો.
2x^{2}-x+4=0
બંને સાઇડ્સ માટે 4 ઍડ કરો.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times 4}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે -1 ને, અને c માટે 4 ને બદલીને મૂકો.
x=\frac{-\left(-1\right)±\sqrt{1-8\times 4}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-1\right)±\sqrt{1-32}}{2\times 2}
4 ને -8 વાર ગુણાકાર કરો.
x=\frac{-\left(-1\right)±\sqrt{-31}}{2\times 2}
-32 માં 1 ઍડ કરો.
x=\frac{-\left(-1\right)±\sqrt{31}i}{2\times 2}
-31 નો વર્ગ મૂળ લો.
x=\frac{1±\sqrt{31}i}{2\times 2}
-1 નો વિરોધી 1 છે.
x=\frac{1±\sqrt{31}i}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{1+\sqrt{31}i}{4}
હવે x=\frac{1±\sqrt{31}i}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. i\sqrt{31} માં 1 ઍડ કરો.
x=\frac{-\sqrt{31}i+1}{4}
હવે x=\frac{1±\sqrt{31}i}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 1 માંથી i\sqrt{31} ને ઘટાડો.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
2x^{2}-x=-4
બન્ને બાજુથી x ઘટાડો.
\frac{2x^{2}-x}{2}=-\frac{4}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}-\frac{1}{2}x=-\frac{4}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-\frac{1}{2}x=-2
-4 નો 2 થી ભાગાકાર કરો.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-2+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2}, x પદના ગુણાંકને, -\frac{1}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{1}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-2+\frac{1}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{1}{4} નો વર્ગ કાઢો.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{31}{16}
\frac{1}{16} માં -2 ઍડ કરો.
\left(x-\frac{1}{4}\right)^{2}=-\frac{31}{16}
અવયવ x^{2}-\frac{1}{2}x+\frac{1}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{1}{4}=\frac{\sqrt{31}i}{4} x-\frac{1}{4}=-\frac{\sqrt{31}i}{4}
સરળ બનાવો.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
સમીકરણની બન્ને બાજુ \frac{1}{4} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}