x માટે ઉકેલો
x=-1
x=\frac{1}{2}=0.5
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x^{2}+11x+9-10x=10
બન્ને બાજુથી 10x ઘટાડો.
2x^{2}+x+9=10
x ને મેળવવા માટે 11x અને -10x ને એકસાથે કરો.
2x^{2}+x+9-10=0
બન્ને બાજુથી 10 ઘટાડો.
2x^{2}+x-1=0
-1 મેળવવા માટે 9 માંથી 10 ને ઘટાડો.
a+b=1 ab=2\left(-1\right)=-2
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની 2x^{2}+ax+bx-1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=-1 b=2
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(2x^{2}-x\right)+\left(2x-1\right)
2x^{2}+x-1 ને \left(2x^{2}-x\right)+\left(2x-1\right) તરીકે ફરીથી લખો.
x\left(2x-1\right)+2x-1
2x^{2}-x માં x ના અવયવ પાડો.
\left(2x-1\right)\left(x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 2x-1 ના અવયવ પાડો.
x=\frac{1}{2} x=-1
સમીકરણનો ઉકેલ શોધવા માટે, 2x-1=0 અને x+1=0 ઉકેલો.
2x^{2}+11x+9-10x=10
બન્ને બાજુથી 10x ઘટાડો.
2x^{2}+x+9=10
x ને મેળવવા માટે 11x અને -10x ને એકસાથે કરો.
2x^{2}+x+9-10=0
બન્ને બાજુથી 10 ઘટાડો.
2x^{2}+x-1=0
-1 મેળવવા માટે 9 માંથી 10 ને ઘટાડો.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે 1 ને, અને c માટે -1 ને બદલીને મૂકો.
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
વર્ગ 1.
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{1+8}}{2\times 2}
-1 ને -8 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{9}}{2\times 2}
8 માં 1 ઍડ કરો.
x=\frac{-1±3}{2\times 2}
9 નો વર્ગ મૂળ લો.
x=\frac{-1±3}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{2}{4}
હવે x=\frac{-1±3}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 3 માં -1 ઍડ કરો.
x=\frac{1}{2}
2 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{2}{4} ને ઘટાડો.
x=-\frac{4}{4}
હવે x=\frac{-1±3}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી 3 ને ઘટાડો.
x=-1
-4 નો 4 થી ભાગાકાર કરો.
x=\frac{1}{2} x=-1
સમીકરણ હવે ઉકેલાઈ ગયું છે.
2x^{2}+11x+9-10x=10
બન્ને બાજુથી 10x ઘટાડો.
2x^{2}+x+9=10
x ને મેળવવા માટે 11x અને -10x ને એકસાથે કરો.
2x^{2}+x=10-9
બન્ને બાજુથી 9 ઘટાડો.
2x^{2}+x=1
1 મેળવવા માટે 10 માંથી 9 ને ઘટાડો.
\frac{2x^{2}+x}{2}=\frac{1}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}+\frac{1}{2}x=\frac{1}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2}, x પદના ગુણાંકને, \frac{1}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{1}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{1}{4} નો વર્ગ કાઢો.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{16} માં \frac{1}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
અવયવ x^{2}+\frac{1}{2}x+\frac{1}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
સરળ બનાવો.
x=\frac{1}{2} x=-1
સમીકરણની બન્ને બાજુથી \frac{1}{4} નો ઘટાડો કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}