n માટે ઉકેલો
n = \frac{\sqrt{105} + 5}{4} \approx 3.811737691
n=\frac{5-\sqrt{105}}{4}\approx -1.311737691
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2n^{2}-5n-4=6
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
2n^{2}-5n-4-6=6-6
સમીકરણની બન્ને બાજુથી 6 નો ઘટાડો કરો.
2n^{2}-5n-4-6=0
સ્વયંમાંથી 6 ઘટાડવા પર 0 બચે.
2n^{2}-5n-10=0
-4 માંથી 6 ને ઘટાડો.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે -5 ને, અને c માટે -10 ને બદલીને મૂકો.
n=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-10\right)}}{2\times 2}
વર્ગ -5.
n=\frac{-\left(-5\right)±\sqrt{25-8\left(-10\right)}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
n=\frac{-\left(-5\right)±\sqrt{25+80}}{2\times 2}
-10 ને -8 વાર ગુણાકાર કરો.
n=\frac{-\left(-5\right)±\sqrt{105}}{2\times 2}
80 માં 25 ઍડ કરો.
n=\frac{5±\sqrt{105}}{2\times 2}
-5 નો વિરોધી 5 છે.
n=\frac{5±\sqrt{105}}{4}
2 ને 2 વાર ગુણાકાર કરો.
n=\frac{\sqrt{105}+5}{4}
હવે n=\frac{5±\sqrt{105}}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \sqrt{105} માં 5 ઍડ કરો.
n=\frac{5-\sqrt{105}}{4}
હવે n=\frac{5±\sqrt{105}}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 5 માંથી \sqrt{105} ને ઘટાડો.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
2n^{2}-5n-4=6
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
2n^{2}-5n-4-\left(-4\right)=6-\left(-4\right)
સમીકરણની બન્ને બાજુ 4 ઍડ કરો.
2n^{2}-5n=6-\left(-4\right)
સ્વયંમાંથી -4 ઘટાડવા પર 0 બચે.
2n^{2}-5n=10
6 માંથી -4 ને ઘટાડો.
\frac{2n^{2}-5n}{2}=\frac{10}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
n^{2}-\frac{5}{2}n=\frac{10}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
n^{2}-\frac{5}{2}n=5
10 નો 2 થી ભાગાકાર કરો.
n^{2}-\frac{5}{2}n+\left(-\frac{5}{4}\right)^{2}=5+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2}, x પદના ગુણાંકને, -\frac{5}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{5}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
n^{2}-\frac{5}{2}n+\frac{25}{16}=5+\frac{25}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{5}{4} નો વર્ગ કાઢો.
n^{2}-\frac{5}{2}n+\frac{25}{16}=\frac{105}{16}
\frac{25}{16} માં 5 ઍડ કરો.
\left(n-\frac{5}{4}\right)^{2}=\frac{105}{16}
અવયવ n^{2}-\frac{5}{2}n+\frac{25}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(n-\frac{5}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
n-\frac{5}{4}=\frac{\sqrt{105}}{4} n-\frac{5}{4}=-\frac{\sqrt{105}}{4}
સરળ બનાવો.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
સમીકરણની બન્ને બાજુ \frac{5}{4} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}