મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2\left(n^{2}-6n+9\right)
2 નો અવયવ પાડો.
\left(n-3\right)^{2}
n^{2}-6n+9 ગણતરી કરો. પૂર્ણ ચોરસના સુત્ર, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, જ્યાં a=n અને b=3 નો ઉપયોગ કરો.
2\left(n-3\right)^{2}
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
factor(2n^{2}-12n+18)
આ ત્રિપદી પાસે ત્રિપદી વર્ગનો પ્રપત્ર છે, કદાચ એ માટે સામાન્ય અવયવ સાથે ગુણાકાર કરો. ત્રિપદી વર્ગોનું અગ્રણી અને રિક્ત પદોના વર્ગ મૂળ શોધવાથી અવયવ કરી શકાય છે.
gcf(2,-12,18)=2
ગુણાંકોના ગુરુત્તમ સામાન્ય અવયવને શોધો.
2\left(n^{2}-6n+9\right)
2 નો અવયવ પાડો.
\sqrt{9}=3
રિક્ત પદ, 9 નો વર્ગ મૂળ શોધો.
2\left(n-3\right)^{2}
ત્રિપદી વર્ગ એ દ્વિપદીનો વર્ગ છે જે અગ્રણી અને ત્રિપદી વર્ગના મધ્ય પદના ચિહ્ન દ્વારા નક્કી કરેલ ચિહ્ન સાથે, રિક્ત પદોના વર્ગ મૂળોનું કુલ અથવા તફાવત છે.
2n^{2}-12n+18=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
n=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
n=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
વર્ગ -12.
n=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
n=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
18 ને -8 વાર ગુણાકાર કરો.
n=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
-144 માં 144 ઍડ કરો.
n=\frac{-\left(-12\right)±0}{2\times 2}
0 નો વર્ગ મૂળ લો.
n=\frac{12±0}{2\times 2}
-12 નો વિરોધી 12 છે.
n=\frac{12±0}{4}
2 ને 2 વાર ગુણાકાર કરો.
2n^{2}-12n+18=2\left(n-3\right)\left(n-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 3 અને x_{2} ને બદલે 3 મૂકો.