x માટે ઉકેલો
x = \frac{\sqrt{3001} + 55}{4} \approx 27.445345925
x=\frac{55-\sqrt{3001}}{4}\approx 0.054654075
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x^{2}-55x+3=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\times 2\times 3}}{2\times 2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 2 ને, b માટે -55 ને, અને c માટે 3 ને બદલીને મૂકો.
x=\frac{-\left(-55\right)±\sqrt{3025-4\times 2\times 3}}{2\times 2}
વર્ગ -55.
x=\frac{-\left(-55\right)±\sqrt{3025-8\times 3}}{2\times 2}
2 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-55\right)±\sqrt{3025-24}}{2\times 2}
3 ને -8 વાર ગુણાકાર કરો.
x=\frac{-\left(-55\right)±\sqrt{3001}}{2\times 2}
-24 માં 3025 ઍડ કરો.
x=\frac{55±\sqrt{3001}}{2\times 2}
-55 નો વિરોધી 55 છે.
x=\frac{55±\sqrt{3001}}{4}
2 ને 2 વાર ગુણાકાર કરો.
x=\frac{\sqrt{3001}+55}{4}
હવે x=\frac{55±\sqrt{3001}}{4} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \sqrt{3001} માં 55 ઍડ કરો.
x=\frac{55-\sqrt{3001}}{4}
હવે x=\frac{55±\sqrt{3001}}{4} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 55 માંથી \sqrt{3001} ને ઘટાડો.
x=\frac{\sqrt{3001}+55}{4} x=\frac{55-\sqrt{3001}}{4}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
2x^{2}-55x+3=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
2x^{2}-55x+3-3=-3
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
2x^{2}-55x=-3
સ્વયંમાંથી 3 ઘટાડવા પર 0 બચે.
\frac{2x^{2}-55x}{2}=-\frac{3}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x^{2}-\frac{55}{2}x=-\frac{3}{2}
2 થી ભાગાકાર કરવાથી 2 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-\frac{55}{2}x+\left(-\frac{55}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{55}{4}\right)^{2}
-\frac{55}{2}, x પદના ગુણાંકને, -\frac{55}{4} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{55}{4} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-\frac{55}{2}x+\frac{3025}{16}=-\frac{3}{2}+\frac{3025}{16}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{55}{4} નો વર્ગ કાઢો.
x^{2}-\frac{55}{2}x+\frac{3025}{16}=\frac{3001}{16}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{3025}{16} માં -\frac{3}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x-\frac{55}{4}\right)^{2}=\frac{3001}{16}
અવયવ x^{2}-\frac{55}{2}x+\frac{3025}{16}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{55}{4}\right)^{2}}=\sqrt{\frac{3001}{16}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{55}{4}=\frac{\sqrt{3001}}{4} x-\frac{55}{4}=-\frac{\sqrt{3001}}{4}
સરળ બનાવો.
x=\frac{\sqrt{3001}+55}{4} x=\frac{55-\sqrt{3001}}{4}
સમીકરણની બન્ને બાજુ \frac{55}{4} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}