મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=8 ab=16\times 1=16
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 16x^{2}+ax+bx+1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,16 2,8 4,4
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 16 આપે છે.
1+16=17 2+8=10 4+4=8
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=4 b=4
સમાધાન એ જોડી છે જે સરવાળો 8 આપે છે.
\left(16x^{2}+4x\right)+\left(4x+1\right)
16x^{2}+8x+1 ને \left(16x^{2}+4x\right)+\left(4x+1\right) તરીકે ફરીથી લખો.
4x\left(4x+1\right)+4x+1
16x^{2}+4x માં 4x ના અવયવ પાડો.
\left(4x+1\right)\left(4x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 4x+1 ના અવયવ પાડો.
\left(4x+1\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
factor(16x^{2}+8x+1)
આ ત્રિપદી પાસે ત્રિપદી વર્ગનો પ્રપત્ર છે, કદાચ એ માટે સામાન્ય અવયવ સાથે ગુણાકાર કરો. ત્રિપદી વર્ગોનું અગ્રણી અને રિક્ત પદોના વર્ગ મૂળ શોધવાથી અવયવ કરી શકાય છે.
gcf(16,8,1)=1
ગુણાંકોના ગુરુત્તમ સામાન્ય અવયવને શોધો.
\sqrt{16x^{2}}=4x
અગ્રણી પદ, 16x^{2} નો વર્ગ મૂળ શોધો.
\left(4x+1\right)^{2}
ત્રિપદી વર્ગ એ દ્વિપદીનો વર્ગ છે જે અગ્રણી અને ત્રિપદી વર્ગના મધ્ય પદના ચિહ્ન દ્વારા નક્કી કરેલ ચિહ્ન સાથે, રિક્ત પદોના વર્ગ મૂળોનું કુલ અથવા તફાવત છે.
16x^{2}+8x+1=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2\times 16}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-8±\sqrt{64-4\times 16}}{2\times 16}
વર્ગ 8.
x=\frac{-8±\sqrt{64-64}}{2\times 16}
16 ને -4 વાર ગુણાકાર કરો.
x=\frac{-8±\sqrt{0}}{2\times 16}
-64 માં 64 ઍડ કરો.
x=\frac{-8±0}{2\times 16}
0 નો વર્ગ મૂળ લો.
x=\frac{-8±0}{32}
16 ને 2 વાર ગુણાકાર કરો.
16x^{2}+8x+1=16\left(x-\left(-\frac{1}{4}\right)\right)\left(x-\left(-\frac{1}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -\frac{1}{4} અને x_{2} ને બદલે -\frac{1}{4} મૂકો.
16x^{2}+8x+1=16\left(x+\frac{1}{4}\right)\left(x+\frac{1}{4}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
16x^{2}+8x+1=16\times \frac{4x+1}{4}\left(x+\frac{1}{4}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{1}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
16x^{2}+8x+1=16\times \frac{4x+1}{4}\times \frac{4x+1}{4}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{1}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{4\times 4}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{4x+1}{4} નો \frac{4x+1}{4} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{16}
4 ને 4 વાર ગુણાકાર કરો.
16x^{2}+8x+1=\left(4x+1\right)\left(4x+1\right)
16 અને 16 માં ગુરુત્તમ સામાન્ય અવયવ 16 ની બહાર રદ કરો.