અવયવ
\left(5m-3\right)\left(3m+2\right)
મૂલ્યાંકન કરો
15m^{2}+m-6
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=1 ab=15\left(-6\right)=-90
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 15m^{2}+am+bm-6 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -90 આપે છે.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-9 b=10
સમાધાન એ જોડી છે જે સરવાળો 1 આપે છે.
\left(15m^{2}-9m\right)+\left(10m-6\right)
15m^{2}+m-6 ને \left(15m^{2}-9m\right)+\left(10m-6\right) તરીકે ફરીથી લખો.
3m\left(5m-3\right)+2\left(5m-3\right)
પ્રથમ સમૂહમાં 3m અને બીજા સમૂહમાં 2 ના અવયવ પાડો.
\left(5m-3\right)\left(3m+2\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 5m-3 ના અવયવ પાડો.
15m^{2}+m-6=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
m=\frac{-1±\sqrt{1^{2}-4\times 15\left(-6\right)}}{2\times 15}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
m=\frac{-1±\sqrt{1-4\times 15\left(-6\right)}}{2\times 15}
વર્ગ 1.
m=\frac{-1±\sqrt{1-60\left(-6\right)}}{2\times 15}
15 ને -4 વાર ગુણાકાર કરો.
m=\frac{-1±\sqrt{1+360}}{2\times 15}
-6 ને -60 વાર ગુણાકાર કરો.
m=\frac{-1±\sqrt{361}}{2\times 15}
360 માં 1 ઍડ કરો.
m=\frac{-1±19}{2\times 15}
361 નો વર્ગ મૂળ લો.
m=\frac{-1±19}{30}
15 ને 2 વાર ગુણાકાર કરો.
m=\frac{18}{30}
હવે m=\frac{-1±19}{30} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 19 માં -1 ઍડ કરો.
m=\frac{3}{5}
6 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{18}{30} ને ઘટાડો.
m=-\frac{20}{30}
હવે m=\frac{-1±19}{30} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી 19 ને ઘટાડો.
m=-\frac{2}{3}
10 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-20}{30} ને ઘટાડો.
15m^{2}+m-6=15\left(m-\frac{3}{5}\right)\left(m-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે \frac{3}{5} અને x_{2} ને બદલે -\frac{2}{3} મૂકો.
15m^{2}+m-6=15\left(m-\frac{3}{5}\right)\left(m+\frac{2}{3}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
15m^{2}+m-6=15\times \frac{5m-3}{5}\left(m+\frac{2}{3}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઘટાડીને m માંથી \frac{3}{5} ને ઘટાડો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
15m^{2}+m-6=15\times \frac{5m-3}{5}\times \frac{3m+2}{3}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને m માં \frac{2}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
15m^{2}+m-6=15\times \frac{\left(5m-3\right)\left(3m+2\right)}{5\times 3}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{5m-3}{5} નો \frac{3m+2}{3} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
15m^{2}+m-6=15\times \frac{\left(5m-3\right)\left(3m+2\right)}{15}
3 ને 5 વાર ગુણાકાર કરો.
15m^{2}+m-6=\left(5m-3\right)\left(3m+2\right)
15 અને 15 માં ગુરુત્તમ સામાન્ય અવયવ 15 ની બહાર રદ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}