અવયવ
\left(3q+2\right)\left(4q+5\right)
મૂલ્યાંકન કરો
\left(3q+2\right)\left(4q+5\right)
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=23 ab=12\times 10=120
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 12q^{2}+aq+bq+10 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 120 આપે છે.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=8 b=15
સમાધાન એ જોડી છે જે સરવાળો 23 આપે છે.
\left(12q^{2}+8q\right)+\left(15q+10\right)
12q^{2}+23q+10 ને \left(12q^{2}+8q\right)+\left(15q+10\right) તરીકે ફરીથી લખો.
4q\left(3q+2\right)+5\left(3q+2\right)
પ્રથમ સમૂહમાં 4q અને બીજા સમૂહમાં 5 ના અવયવ પાડો.
\left(3q+2\right)\left(4q+5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 3q+2 ના અવયવ પાડો.
12q^{2}+23q+10=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
q=\frac{-23±\sqrt{23^{2}-4\times 12\times 10}}{2\times 12}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
q=\frac{-23±\sqrt{529-4\times 12\times 10}}{2\times 12}
વર્ગ 23.
q=\frac{-23±\sqrt{529-48\times 10}}{2\times 12}
12 ને -4 વાર ગુણાકાર કરો.
q=\frac{-23±\sqrt{529-480}}{2\times 12}
10 ને -48 વાર ગુણાકાર કરો.
q=\frac{-23±\sqrt{49}}{2\times 12}
-480 માં 529 ઍડ કરો.
q=\frac{-23±7}{2\times 12}
49 નો વર્ગ મૂળ લો.
q=\frac{-23±7}{24}
12 ને 2 વાર ગુણાકાર કરો.
q=-\frac{16}{24}
હવે q=\frac{-23±7}{24} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 7 માં -23 ઍડ કરો.
q=-\frac{2}{3}
8 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-16}{24} ને ઘટાડો.
q=-\frac{30}{24}
હવે q=\frac{-23±7}{24} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -23 માંથી 7 ને ઘટાડો.
q=-\frac{5}{4}
6 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-30}{24} ને ઘટાડો.
12q^{2}+23q+10=12\left(q-\left(-\frac{2}{3}\right)\right)\left(q-\left(-\frac{5}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -\frac{2}{3} અને x_{2} ને બદલે -\frac{5}{4} મૂકો.
12q^{2}+23q+10=12\left(q+\frac{2}{3}\right)\left(q+\frac{5}{4}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
12q^{2}+23q+10=12\times \frac{3q+2}{3}\left(q+\frac{5}{4}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને q માં \frac{2}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
12q^{2}+23q+10=12\times \frac{3q+2}{3}\times \frac{4q+5}{4}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને q માં \frac{5}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
12q^{2}+23q+10=12\times \frac{\left(3q+2\right)\left(4q+5\right)}{3\times 4}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{3q+2}{3} નો \frac{4q+5}{4} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
12q^{2}+23q+10=12\times \frac{\left(3q+2\right)\left(4q+5\right)}{12}
4 ને 3 વાર ગુણાકાર કરો.
12q^{2}+23q+10=\left(3q+2\right)\left(4q+5\right)
12 અને 12 માં ગુરુત્તમ સામાન્ય અવયવ 12 ની બહાર રદ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}