મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=19 ab=10\times 6=60
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને 10x^{2}+ax+bx+6 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,60 2,30 3,20 4,15 5,12 6,10
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 60 આપે છે.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=4 b=15
સમાધાન એ જોડી છે જે સરવાળો 19 આપે છે.
\left(10x^{2}+4x\right)+\left(15x+6\right)
10x^{2}+19x+6 ને \left(10x^{2}+4x\right)+\left(15x+6\right) તરીકે ફરીથી લખો.
2x\left(5x+2\right)+3\left(5x+2\right)
પ્રથમ સમૂહમાં 2x અને બીજા સમૂહમાં 3 ના અવયવ પાડો.
\left(5x+2\right)\left(2x+3\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ 5x+2 ના અવયવ પાડો.
10x^{2}+19x+6=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-19±\sqrt{19^{2}-4\times 10\times 6}}{2\times 10}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-19±\sqrt{361-4\times 10\times 6}}{2\times 10}
વર્ગ 19.
x=\frac{-19±\sqrt{361-40\times 6}}{2\times 10}
10 ને -4 વાર ગુણાકાર કરો.
x=\frac{-19±\sqrt{361-240}}{2\times 10}
6 ને -40 વાર ગુણાકાર કરો.
x=\frac{-19±\sqrt{121}}{2\times 10}
-240 માં 361 ઍડ કરો.
x=\frac{-19±11}{2\times 10}
121 નો વર્ગ મૂળ લો.
x=\frac{-19±11}{20}
10 ને 2 વાર ગુણાકાર કરો.
x=-\frac{8}{20}
હવે x=\frac{-19±11}{20} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 11 માં -19 ઍડ કરો.
x=-\frac{2}{5}
4 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-8}{20} ને ઘટાડો.
x=-\frac{30}{20}
હવે x=\frac{-19±11}{20} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -19 માંથી 11 ને ઘટાડો.
x=-\frac{3}{2}
10 બહાર કાઢીને અને રદ કરીને ન્યૂનતમ ટર્મ્સ પર અપૂર્ણાંક \frac{-30}{20} ને ઘટાડો.
10x^{2}+19x+6=10\left(x-\left(-\frac{2}{5}\right)\right)\left(x-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -\frac{2}{5} અને x_{2} ને બદલે -\frac{3}{2} મૂકો.
10x^{2}+19x+6=10\left(x+\frac{2}{5}\right)\left(x+\frac{3}{2}\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
10x^{2}+19x+6=10\times \frac{5x+2}{5}\left(x+\frac{3}{2}\right)
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{2}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
10x^{2}+19x+6=10\times \frac{5x+2}{5}\times \frac{2x+3}{2}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને x માં \frac{3}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
10x^{2}+19x+6=10\times \frac{\left(5x+2\right)\left(2x+3\right)}{5\times 2}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{5x+2}{5} નો \frac{2x+3}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
10x^{2}+19x+6=10\times \frac{\left(5x+2\right)\left(2x+3\right)}{10}
2 ને 5 વાર ગુણાકાર કરો.
10x^{2}+19x+6=\left(5x+2\right)\left(2x+3\right)
10 અને 10 માં ગુરુત્તમ સામાન્ય અવયવ 10 ની બહાર રદ કરો.